Abstract Global climate and land use change are causing woody plant encroachment in arctic, alpine, and arid/semi‐arid ecosystems around the world, yet our understanding of the belowground impacts of this phenomenon is limited. We conducted a globally distributed field study of 13 alpine sites across four continents undergoing woody plant encroachment and sampled soils from both woody encroached and nearby herbaceous plant community types. We found that woody plant encroachment influenced soil microbial richness and community composition across sites based on multiple factors including woody plant traits, site level climate, and abiotic soil conditions. In particular, root symbiont type was a key determinant of belowground effects, as Nitrogen‐fixing woody plants had higher soil fungal richness, while Ecto/Ericoid mycorrhizal species had higher soil bacterial richness and symbiont types had distinct soil microbial community composition. Woody plant leaf traits indirectly influenced soil microbes through their impact on soil abiotic conditions, primarily soil pH and C:N ratios. Finally, site‐level climate affected the overall magnitude and direction of woody plant influence, as soil fungal and bacterial richness were either higher or lower in woody encroached versus herbaceous soils depending on mean annual temperature and precipitation. All together, these results document global impacts of woody plant encroachment on soil microbial communities, but highlight that multiple biotic and abiotic pathways must be considered to scale up globally from site‐ and species‐level patterns. Considering both the aboveground and belowground effects of woody encroachment will be critical to predict future changes in alpine ecosystem structure and function and subsequent feedbacks to the global climate system.
more »
« less
Watershed and fire severity are stronger determinants of soil chemistry and microbiomes than within-watershed woody encroachment in a tallgrass prairie system
ABSTRACT Fire can impact terrestrial ecosystems by changing abiotic and biotic conditions. Short fire intervals maintain grasslands and communities adapted to frequent, low-severity fires. Shrub encroachment that follows longer fire intervals accumulates fuel and can increase fire severity. This patchily distributed biomass creates mosaics of burn severities in the landscape—pyrodiversity. Afforded by a scheduled burn of a watershed protected from fires for 27 years, we investigated effects of woody encroachment and burn severity on soil chemistry and soil-inhabiting bacteria and fungi. We compared soils before and after fire within the fire-protected, shrub-encroached watershed and soils in an adjacent, annually burned and non-encroached watershed. Organic matter and nutrients accumulated in the fire-protected watershed but responded less to woody encroachment within the encroached watershed. Bioavailable nitrogen and phosphorus and fungal and bacterial communities responded to high-severity burn regardless of encroachment. Low-severity fire effects on soil nutrients differed, increased bacterial but decreased fungal diversity and effects of woody encroachment within the encroached watershed were minimal. High-severity burns in the fire-protected watershed led to a novel soil system state distinct from non-encroached and encroached soil systems. We conclude that severe fires may open grassland restoration opportunities to manipulate soil chemistry and microbial communities in shrub-encroached habitats.
more »
« less
- Award ID(s):
- 2025849
- PAR ID:
- 10382032
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- FEMS Microbiology Ecology
- Volume:
- 97
- Issue:
- 12
- ISSN:
- 1574-6941
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Fire is a common ecological disturbance that structures terrestrial ecosystems and biological communities. The ability of fires to contribute to ecosystem heterogeneity has been termed pyrodiversity and has been directly linked to biodiversity (i.e., the pyrodiversity–biodiversity hypothesis). Since climate change models predict increases in fire frequency, understanding how fire pyrodiversity influences soil microbes is important for predicting how ecosystems will respond to fire regime changes. Here we tested how fire frequency‐driven changes in burn patterns (i.e., pyrodiversity) influenced soil microbial communities and diversity. We assessed pyrodiversity effects on soil microbes by manipulating fire frequency (annual vs. biennial fires) in a tallgrass prairie restoration and evaluating how changes in burn patterns influenced microbial communities (bacteria and fungi). Annual burns produced more heterogeneous burn patterns (higher pyrodiversity) that were linked to shifts in fungal and bacterial community composition. While fire frequency did not influence microbial (bacteria and fungi) alpha diversity, beta diversity did increase with pyrodiversity. Changes in fungal community composition were not linked to burn patterns, suggesting that pyrodiversity effects on other ecosystem components (e.g., plants and soil characteristics) influenced fungal community dynamics and the greater beta diversity observed in the annually burned plots. Shifts in bacterial community composition were linked to variation in higher severity burn pattern components (grey and white ash), suggesting that thermotolerance contributed to the observed changes in bacterial community composition and lower beta diversity in the biennially burned plots. This demonstrates that fire frequency‐driven increases in pyrodiversity augment biodiversity and may influence productivity in fire‐prone ecosystems.more » « less
-
Woody plant encroachment of grassland ecosystems is a geographically extensive phenomenon that can lead to rapid land degradation and significantly alter global biogeochemical cycles, and this ecosystem change has been particularly well documented in the desert grassland of the southwestern United States. Fires are known to decrease vegetation cover and increase soil erodibility, and the shifts in wildfire regimes are currently occurring in Chihuahuan Desert. It is generally recognized that the invasion of woody vegetation into grasslands and savannas will increase the carbon stored in arid ecosystems. However, carbon storage may be complicated by disturbance such as wildfire, which alters the distribution and amount of C pools in the drylands. The relative distribution of each vegetation type to the soil C pool and its variability after fires are not well-understood in this ecosystem. This research will investigate the variations of SOC and its vegetation source partition at microsite scale in the woody shrub encroached grassland after the occurrence of fire, which will provide further information on wildfire’s influence on soil C pool dynamics in arid and semiarid lands. The post-fire changes of the spatial pattern of SOC and vegetation contributions in the shrub encroached grassland will be analyzed using a geostatistical method outlined in Guan et al. (2018). Overall, understanding the post-fire redistribution and sources of SOC may provide insights on the important role played by fire, aeolian processes and vegetation in the dynamics of desert grassland ecosystems.more » « less
-
The encroachment of woody shrubs into grasslands is a phenomenon that has been occurring in the Chihuahuan Desert since the 1800s. Research shows that extensive livestock grazing and increased drought levels have acted as the main drivers of the grassland-to-shrubland transition. Very few studies have considered the impacts of such vegetation changes on microbial communities. Microbes play important ecosystem roles in nutrient cycling and carbon sequestration but also have the potential to act as pathogens. As the role of microbes in ecosystems is so important, it is crucial to understand the potential impacts of shrub encroachment on microbes and vice versa. Additionally, dryland microbes in general are understudied and as drylands cover over 40% of Earth’s land, understanding these microbes is of great ecological importance. The goal of this study was to assess microbial communities in shrub encroached systems in the Chihuahuan Desert to improve understanding of the ecological impacts of encroachment and increase general knowledge of dryland microbes. To conduct this study, soil samples were collected from sites dominated by black grama grass (Bouteloua eriopoda), sites dominated by honey mesquite shrubs (Prosopis glandulosa), and transition sites with both black grama and mesquite. DNA from soil samples was sequenced for bacteria (16S) and fungi (ITS2). Soil sampling was conducted through five sampling periods across a 10-month range to assess any potential seasonal variation in the microbial communities. In addition to DNA sequencing, microbial biomass and other environmental variables were collected. Statistical analyses were conducted to assess potential differences in microbial communities between vegetation types and seasons. Analyses included assessments of alpha and beta diversity, co-occurrence networks, and differential abundance analyses. Results show that there are significant changes in the microbial communities across vegetation types and seasons. Unique fungal and bacterial communities were identified in association with the different vegetation types, demonstrating that differences in vegetation influence microbial communities. Additionally, findings show that microbial communities are strongly impacted by seasons, showing decreases in biomass and changes to community composition in warm summer months compared to cooler months. Additionally, results show higher proportions of fungal pathogens in grass sites compared to other sites. Overall, this study demonstrates that microbial communities are influenced by shrub encroachment. As dryland microbial communities are often understudied, these findings can provide valuable insight into the ecology of dryland microbes and shrub-encroached systems.more » « less
-
Abstract As the Arctic warms, tundra wildfires are expected to become more frequent and severe. Assessing how the most flammable regions of the tundra respond to burning can inform us about how the rest of the Arctic may be affected by climate change. Here we describe ecosystem responses to tundra fires in the Noatak River watershed of northwestern Alaska using shrub dendrochronology, active‐layer depth monitoring, and remotely sensed vegetation productivity. Results show that relatively productive tundra is more likely to experience fires and to burn more severely, suggesting that fuel loads currently limit tundra fire distribution in the Noatak Valley. Within three years of burning, most alder shrubs sampled had either germinated or resprouted, and vegetation productivity inside 60 burn perimeters had recovered to prefire values. Tundra fires resulted in two phases of increased primary productivity as manifested by increased landscape greening. Phase one occurred in most burned areas 3–10 years after fires, and phase two occurred 16–44 years after fire at sites where tundra fires triggered near‐surface permafrost thaw resulting in shrub proliferation. A fire‐shrub‐greening positive feedback is currently operating in the Noatak Valley and this feedback could expand northward as air temperatures, fire frequencies, and permafrost degradation increase. This feedback will not occur at all locations. In the Noatak Valley, the fire‐shrub‐greening process is relatively limited in tussock tundra communities, where low‐severity fires and shallow active layers exclude shrub proliferation. Climate warming and enhanced fire occurrence will likely shift fire‐poor landscapes into either the tussock tundra or erect‐shrub‐tundra ecological attractor states that now dominate the fire‐rich Noatak Valley.more » « less
An official website of the United States government
