skip to main content


Title: Climate drives coupled regime shifts across subtropical estuarine ecosystems
Ecological regime shifts are expected to increase this century as climate change propagates cascading effects across ecosystems with coupled elements. Here, we demonstrate that the climate-driven salt marsh–to–mangrove transition does not occur in isolation but is linked to lesser-known oyster reef–to–mangrove regime shifts through the provision of mangrove propagules. Using aerial imagery spanning 82 y, we found that 83% of oyster reefs without any initial mangrove cover fully converted to mangrove islands and that mean (± SD) time to conversion was 29.1 ± 9.6 y. In situ assessments of mangrove islands suggest substantial changes in ecosystem structure during conversion, while radiocarbon dates of underlying reef formation indicate that such transitions are abrupt relative to centuries-old reefs. Rapid transition occurred following release from freezes below the red mangrove ( Rhizophora mangle ) physiological tolerance limit (−7.3 °C) and after adjacent marsh-to-mangrove conversion. Additional nonclimate-mediated drivers of ecosystem change were also identified, including oyster reef exposure to wind-driven waves. Coupling of regime shifts arises from the growing supply of mangrove propagules from preceding and adjacent marsh-to-mangrove conversion. Climate projections near the mangrove range limit on the Gulf coast of Florida suggest that regime shifts will begin to transform subtropical estuaries by 2070 if propagule supply keeps pace with predicted warming. Although it will become increasingly difficult to maintain extant oyster habitat with tropicalization, restoring oyster reefs in high-exposure settings or active removal of mangrove seedlings could slow the coupled impacts of climate change shown here.  more » « less
Award ID(s):
2024397
NSF-PAR ID:
10382065
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
33
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Increases in minimum air temperatures have facilitated transitions of salt marshes to mangroves along coastlines in the southeastern United States. Numerous studies have documented mangrove expansion into salt marshes; however, a present‐day conversion of oyster reefs to mangrove islands has not been documented. Using aerial photographs and high‐resolution satellite imagery, we determined percent cover and number of mangrove patches on oyster reefs in Mosquito Lagoon, FL, USA over 74 years (1943–2017) by digitizing oyster reef and “mangrove on oyster reef” areas. Live oyster reefs present in 1943 were tracked through time and the mangrove area on every reef calculated for seven time periods. There was a 103% increase in mangrove cover on live oyster reefs from 1943 (6.6%) to 2017 (13.4%). Between 1943 and 1984, the cover remained consistent (~7%), while between 1984 and 2017, mangrove cover increased rapidly with a 6% year−1increase in mangrove area on oyster reefs (198% increase). In 1943, 8.7% of individual reefs had at least one mangrove patch on them; by 2017, 21.8% of reefs did. Site visits found at least one matureAvicennia germinanson each tracked mangrove reef, with large numbers of smallerRhizophora mangle, suggesting the post‐1984 mangrove increases were the result of increasedR. manglerecruitment and survival. Escalation in the coverage and number of mangrove stands on oyster reefs coincided with a period that lacked extreme freeze events. The time since a temperature of ≤−6.6°C (A.germinansmortality threshold) and ≤−4°C (R. manglemortality threshold) were significantly correlated with the increased ratio of mangrove area:oyster area, total mangrove area, and number of mangrove patches, with greater variation explained by time since ≤ −4°C. The lack of freezes could lead globally to an ecosystem shift of intertidal oyster reefs to mangrove islands near poleward mangrove range limits.

     
    more » « less
  2. Long‐term monitoring is vital to understanding the efficacy of restoration approaches and how restoration may enhance ecosystem functions. We revisited restored oyster reefs 13 years post‐restoration and quantified the resident and transient fauna that utilize restored reefs in three differing landscape contexts: on mudflats isolated from vegetated habitat, along the edge of salt marsh, and in between seagrass and salt marsh habitat. Differences observed 1–2 years post‐restoration in reef development and associated fauna within reefs restored on mudflats versus adjacent to seagrass/salt marsh and salt marsh‐only habitats persisted more than 10 years post‐restoration. Reefs constructed on open mudflat habitats had the highest densities of oysters and resident invertebrates compared to those in other landscape contexts, although all restored reefs continued to enhance local densities of invertebrate taxa (e.g. bivalves, gastropods, decapods, polychaetes, etc.). Catch rates of juvenile fishes were enhanced on restored reefs relative to controls, but to a lesser extent than directly post‐restoration, potentially because the reefs have grown vertically within the intertidal and out of the preferred inundation regime of small juvenile fishes. Reef presence and landscape setting did not augment the catch rates of piscivorous fishes in passive gill nets, similar to initial findings; however, hook‐and‐line catch rates were greater on restored reefs than non‐reef controls. We conclude that ecosystem functions and associated services provided by restored habitats can vary both spatially and temporally; therefore, a better understanding of how service delivery varies among landscape setting and over time should enhance efforts to model these processes and restoration decision‐making.

     
    more » « less
  3. In coral reefs and adjacent seagrass meadow and mangrove environments, short temporal scales (i.e. tidal, diurnal) may have important influences on ecosystem processes and community structure, but these scales are rarely investigated. This study examines how tidal and diurnal forcings influence pelagic microorganisms and nutrient dynamics in 3 important and adjacent coastal biomes: mangroves, coral reefs, and seagrass meadows. We sampled for microbial ( Bacteria and Archaea ) community composition, cell abundances and environmental parameters at 9 coastal sites on St. John, US Virgin Islands that spanned 4 km in distance (4 coral reefs, 2 seagrass meadows and 3 mangrove locations within 2 larger bays). Eight samplings occurred over a 48 h period, capturing day and night microbial dynamics over 2 tidal cycles. The seagrass and reef biomes exhibited relatively consistent environmental conditions and microbial community structure but were dominated by shifts in picocyanobacterial abundances that were most likely attributed to diel dynamics. In contrast, mangrove ecosystems exhibited substantial daily shifts in environmental parameters, heterotrophic cell abundances and microbial community structure that were consistent with the tidal cycle. Differential abundance analysis of mangrove-associated microorganisms revealed enrichment of pelagic oligotrophic taxa during high tide and enrichment of putative sediment-associated microbes during low tide. Our study underpins the importance of tidal and diurnal time scales in structuring coastal microbial and nutrient dynamics, with diel and tidal cycles contributing to a highly dynamic microbial environment in mangroves, and time of day likely contributing to microbial dynamics in seagrass and reef biomes. 
    more » « less
  4. null (Ed.)
    Oyster populations within the coastal bays of Virginia have greatly declined, mainly due to overharvesting and disease, and past restoration efforts have largely focused on increasing their populations. Current restoration goals have now expanded to simultaneously procure the wider ecosystem services oysters can offer, including shoreline protection and ecosystem diversification. However, tradeoffs exist in designing artificial reefs because it is unlikely one design will optimize all services. This study compares the services provided by reef designs varying in elevation and width located adjacent to an intertidal marsh within a coastal bay of VA, USA. We quantified wave attenuation to determine potential coastal protection of the adjacent marsh, and changes to sediment composition and infaunal communities before and after reef construction for 3 years. After construction, we also quantified oyster size and population density to compare high and low elevation reef designs. High elevation reefs were more effective at attenuating waves and fostering oyster growth compared to low elevation reefs. Oysters atop high elevation reefs were on average approximately twice as dense and 20% larger than those on low elevation designs. Reef width had a minimal effect on oyster population density; densities on high and low reefs were similar for designs with one or three rows. The presence of oyster reefs also increased infaunal diversity and sediment organic matter. Our results indicate that artificial reef design can differentially affect the services provided through restoration, and elevation is especially important to consider when designing for oyster population enhancement and coastal protection. 
    more » « less
  5. Abstract Background

    Anthropogenic pressures and climate change threaten the capacity of ecosystems to deliver a variety of services, including protecting coastal communities from hazards like flooding and erosion. Human interventions aim to buffer against or overcome these threats by providing physical protection for existing coastal infrastructure and communities, along with added ecological, social, or economic co-benefits. These interventions are a type of nature-based solution (NBS), broadly defined as actions working with nature to address societal challenges while also providing benefits for human well-being, biodiversity, and resilience. Despite the increasing popularity of NBS for coastal protection, sometimes in lieu of traditional hardened shorelines (e.g., oyster reefs instead of bulkheads), gaps remain in our understanding of whether common NBS interventions for coastal protection perform as intended. To help fill these knowledge gaps, we aim to identify, collate, and map the evidence base surrounding the performance of active NBS interventions related to coastal protection across a suite of ecological, physical, social, and economic outcomes in salt marsh, seagrass, kelp, mangrove, shellfish reef, and coral reef systems. The resulting evidence base will highlight the current knowledge on NBS performance and inform future uses of NBS meant for coastal protection.

    Methods

    Searches for primary literature on performance of NBS for coastal protection in shallow, biogenic ecosystems will be conducted using a predefined list of indexing platforms, bibliographic databases, open discovery citation indexes, and organizational databases and websites, as well as an online search engine and novel literature discovery tool. All searches will be conducted in English and will be restricted to literature published from 1980 to present. Resulting literature will be screened against set inclusion criteria (i.e., population, intervention, outcome, study type) at the level of title and abstract followed by full text. Screening will be facilitated by a web-based active learning tool that incorporates user feedback via machine learning to prioritize articles for review. Metadata will be extracted from articles that meet inclusion criteria and summarized in a narrative report detailing the distribution and abundance of evidence surrounding NBS performance, including evidence clusters, evidence gaps, and the precision and sensitivity of the search strategy.

     
    more » « less