Oysters,Crassostrea virginica, are economically and ecologically valuable but have severely declined, and restoration is needed. As with the restoration and aquaculture of many shellfish species, restored oyster reefs are often impeded by predation losses, reducing restoration success and restricting locations where restored reefs are viable. Like many organisms, shellfish can modify their morphology to reduce predation risk by detecting and responding to chemical signals emanating from predators and injured prey. Oysters grow heavier, stronger shells in response to predation risk cues, which improves their survival. We tested if using predator cues to trigger shell hardening in oysters could be performed over a scale suitable for oyster reef restoration and improve oyster survival long‐term. We constructed an intertidal oyster reef using oysters grown in a nursery for 4 weeks while exposed to either exudates from Blue crab (Callinectes sapidus) predators or grown in controls without predator cues. Oysters grown with predators were 65% harder than those grown in controls, and after 1 year in the field, had a 60% increase in survival. Predation losses on the restored reef were significant, and the benefit of predator induction for survival was highest at intermediate tidal elevations, presumably due to intermediate levels of predation and abiotic stress. Our results suggest that manipulating the morphology of cultivated or restored species can be an effective tool to improve survival in habitats where consumers impede restoration success. 
                        more » 
                        « less   
                    
                            
                            Coastal squeeze on temperate reefs: Long‐term shifts in salinity, water quality, and oyster‐associated communities
                        
                    
    
            Abstract Foundation species, such as mangroves, saltmarshes, kelps, seagrasses, and oysters, thrive within suitable environmental envelopes as narrow ribbons along the land–sea margin. Therefore, these habitat‐forming species and resident fauna are sensitive to modified environmental gradients. For oysters, many estuaries impacted by sea‐level rise, channelization, and municipal infrastructure are experiencing saltwater intrusion and water‐quality degradation that may alter reef distributions, functions, and services. To explore decadal‐scale oyster–reef community patterns across a temperate estuary in response to environmental change, we resampled reefs in the Newport River Estuary (NRE) during 2013–2015 that had previously been studied during 1955–1956. We also coalesced historical NRE reef distribution (1880s–2015), salinity (1913–2015), and water‐quality‐driven shellfish closure boundary (1970s–2015) data to document environmental trends that could influence reef ecology and service delivery. Over the last 60–120 years, the entire NRE has shifted toward higher salinities. Consequently, oyster–reef communities have become less distinct across the estuary, manifest by 20%–27% lower species turnover and decreased faunal richness among NRE reefs in the 2010s relative to the 1950s. During the 2010s, NRE oyster–reef communities tended to cluster around a euhaline, intertidal‐reef type more so than during the 1950s. This followed faunal expansions farther up estuary and biological degradation of subtidal reefs as NRE conditions became more marine and favorable for aggressive, reef‐destroying taxa. In addition to these biological shifts, the area of suitable bottom on which subtidal reefs persist (contracting due to up‐estuary intrusion of marine waters) and support human harvest (driven by water quality, eroding from up‐estuary) has decreased by >75% since the natural history of NRE reefs was first explored. This “coastal squeeze” on harvestable subtidal oysters (reduced from a 4.5‐km to a 0.75‐km envelope along the NRE's main axis) will likely have consequences regarding the economic incentives for future oyster conservation, as well as the suite of services delivered by remaining shellfish reefs (e.g., biodiversity maintenance, seafood supply). More broadly, these findings exemplify how “squeeze” may be a pervasive concern for biogenic habitats along terrestrial or marine ecotones during an era of intense global change. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1926395
- PAR ID:
- 10494993
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecological Applications
- Volume:
- 32
- Issue:
- 5
- ISSN:
- 1051-0761
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Oyster populations within the coastal bays of Virginia have greatly declined, mainly due to overharvesting and disease, and past restoration efforts have largely focused on increasing their populations. Current restoration goals have now expanded to simultaneously procure the wider ecosystem services oysters can offer, including shoreline protection and ecosystem diversification. However, tradeoffs exist in designing artificial reefs because it is unlikely one design will optimize all services. This study compares the services provided by reef designs varying in elevation and width located adjacent to an intertidal marsh within a coastal bay of VA, USA. We quantified wave attenuation to determine potential coastal protection of the adjacent marsh, and changes to sediment composition and infaunal communities before and after reef construction for 3 years. After construction, we also quantified oyster size and population density to compare high and low elevation reef designs. High elevation reefs were more effective at attenuating waves and fostering oyster growth compared to low elevation reefs. Oysters atop high elevation reefs were on average approximately twice as dense and 20% larger than those on low elevation designs. Reef width had a minimal effect on oyster population density; densities on high and low reefs were similar for designs with one or three rows. The presence of oyster reefs also increased infaunal diversity and sediment organic matter. Our results indicate that artificial reef design can differentially affect the services provided through restoration, and elevation is especially important to consider when designing for oyster population enhancement and coastal protection.more » « less
- 
            Oyster reef fauna counts and lengths were sampled at natural "reference" reefs and restored shell plant reefs located in the Virginia Coast Reserve. Overfishing and disease decimated oyster reefs in the Virginia Coast Reserve in the 1900s. Reference reefs were defined as remnant reefs that naturally recovered in the early 2000s to develop the pronounced vertical structure and multiple oyster size classes that represent the desired endpoint of restoration efforts. Nearly every year since 2003, The Nature Conservancy and Virginia Marine Resource Commission have constructed oyster reefs in intertidal areas in the VCR. To construct the restored reefs, practitioners launched dredged, fossilized oyster shell from barges to intertidal locations chosen for their bottom stability and accessibility (locations lacked oysters prior to construction). Whelk shell supplemented the oyster shell at some of the restored reefs. TNC practitioners monitor select restored and reference reefs annually for adult and spat live oysters, adult and spat box oysters, mud crabs, mud snails, oyster drills, live clams, and mussels.more » « less
- 
            Abstract Restoration aims to reverse the global declines of foundation species, but it is unclear how project attributes, the physical setting, and antecedent conditions affect restoration success. In coastal seas worldwide, oyster reef restoration is increasing to counter historical habitat destruction and associated declines in fisheries production and biodiversity. Yet, restoration outcomes are highly variable and the factors that enhance oyster production and nekton abundance and diversity on restored reefs are unresolved. To quantify the drivers of oyster restoration success, we used meta‐analysis to synthesize data from 158 restored reefs paired with unstructured habitats along the United States Gulf and Atlantic coasts. The average recovery of oyster production was 65% greater in subtidal (vs. intertidal) zones, 173% greater in polyhaline (vs. mesohaline) environments and increased with tidal range, demonstrating that physical conditions can strongly influence the restoration success of foundation species. Additionally, restoration increased the relative abundance and richness of nektonic fishes and invertebrates over time as reefs aged (at least 8 years post‐construction). Thus, the restoration benefits for provisioning habitat and enhancing biodiversity accrue over time, highlighting that restoration projects need multiple years to maximize ecosystem functions. Furthermore, long‐term monitoring of restored and control sites is needed to assess restoration outcomes and associated drivers. Last, our work reveals data constraints for several potential drivers of restoration outcomes, including reef construction material, reef dimensions, harvest pressure and disease prevalence. More experimental and observational studies are needed to target these factors and measure them with consistent methods across studies. Our findings indicate that the assisted recovery of foundation species yields several enhancements to ecosystem services, but such benefits are mediated by time and environmental conditions.more » « less
- 
            This dataset has been superceded by Lusk, B., R. Smith, and M.C.N. Castorani. 2024. Oyster fauna lengths, counts, and biomass from restored and reference reefs in Virginia coastal bays, 2005-2023 ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/d68de69f29cee5f737313a07f813f245 (Accessed 2024-02-22). which includes additional years and parameters. Oyster and associated reef fauna counts and lengths were sampled at 16 natural reference reefs and 61 restored shell plant reefs located at 18 sites in the Virginia Coast Reserve. Overfishing and disease decimated oyster reefs in the Virginia Coast Reserve in the 1900s. Reference reefs were defined as remnant reefs that naturally recovered in the early 2000s to develop the pronounced vertical structure and multiple oyster size classes that represent the desired endpoint of restoration efforts. Nearly every year since 2003, The Nature Conservancy and Virginia Marine Resource Commission have constructed oyster reefs in intertidal areas in the VCR. To construct the restored reefs, practitioners applied dredged, fossilized oyster shell to intertidal locations chosen for their bottom stability and accessibility (locations lacked oysters prior to construction). Whelk shell supplemented the oyster shell at 9 of the restored reefs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    