skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Association of malleable factors with adoption of research-based instructional strategies in introductory chemistry, mathematics, and physics
Active learning pedagogies are shown to enhance the outcomes of students, particularly in disciplines known for high attrition rates. Despite the demonstrated benefits of active learning, didactic lecture continues to predominate in science, technology, engineering, and mathematics (STEM) courses. Change agents and professional development programs have historically placed emphasis on develop–disseminate efforts for the adoption of research-based instructional strategies (RBIS). With numerous reported barriers and motivators for trying out and adopting active learning, it is unclear to what extent these factors are associated with adoption of RBIS and the effectiveness of change strategies. We present the results of a large-scale, survey-based study of introductory chemistry, mathematics, and physics instructors and their courses in the United States. Herein, we evaluate the association of 17 malleable factors with the tryout and adoption of RBIS. Multilevel logistic regression analyses suggest that several contextual, personal, and teacher thinking factors are associated with different stages of RBIS adoption. These results are also compared with analogous results evaluating the association of these factors with instructors’ time spent lecturing. We offer actionable implications for change agents to provide targeted professional development programming and for institutional leaders to influence the adoption of active learning pedagogies in introductory STEM courses.  more » « less
Award ID(s):
1726126 1726281
PAR ID:
10382086
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Education
Volume:
7
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundActive learning used in science, technology, engineering, and mathematics (STEM) courses has been shown to improve student outcomes. Nevertheless, traditional lecture-orientated approaches endure in these courses. The implementation of teaching practices is a result of many interrelated factors including disciplinary norms, classroom context, and beliefs about learning. Although factors influencing uptake of active learning are known, no study to date has had the statistical power to empirically test the relative association of these factors with active learning when considered collectively. Prior studies have been limited to a single or small number of evaluated factors; in addition, such studies did not capture the nested nature of institutional contexts. We present the results of a multi-institution, large-scale (N = 2382 instructors;N = 1405 departments;N = 749 institutions) survey-based study in the United States to evaluate 17 malleable factors (i.e., influenceable and changeable) that are associated with the amount of time an instructor spends lecturing, a proxy for implementation of active learning strategies, in introductory postsecondary chemistry, mathematics, and physics courses. ResultsRegression analyses, using multilevel modeling to account for the nested nature of the data, indicate several evaluated contextual factors, personal factors, and teacher thinking factors were significantly associated with percent of class time lecturing when controlling for other factors used in this study. Quantitative results corroborate prior research in indicating that large class sizes are associated with increased percent time lecturing. Other contextual factors (e.g., classroom setup for small group work) and personal contexts (e.g., participation in scholarship of teaching and learning activities) are associated with a decrease in percent time lecturing. ConclusionsGiven the malleable nature of the factors, we offer tangible implications for instructors and administrators to influence the adoption of more active learning strategies in introductory STEM courses. 
    more » « less
  2. Cook, S; Katz, B; Moore-Russo, D (Ed.)
    Studies show that Research-Based Instructional Strategies (RBIS) help students learn, however their adoption has been slow. The Teacher Centered Systematic Reform Model (TCRM) is a general model for organizing enablers and barriers to adoption of new teaching methods that includes departmental, personal and teacher thinking factors. We used the TCRM model as a framework to assess the amount of formal lecture reported by 634 mathematics instructors in their undergraduate courses. Regression analyses found that instructors who participated in Project NExT (a professional development workshop) during their early careers were less likely to use lecture than non-participants. Other significant predictors of lecture less included evaluation expectations emphasizing active teaching methods, involvement in equity and diversity efforts, and prior experience with RBIS. Factors with a positive correlational association with lecture included evaluation efforts by departments where lecture was expected. Results confirmed some prior models in different disciplines. 
    more » « less
  3. Bianchi, Cesario (Ed.)
    Six common beliefs about the usage of active learning in introductory STEM courses are investigated using survey data from 3769 instructors. Three beliefs focus on contextual factors: class size, classroom setup, and teaching evaluations; three focus on individual factors: security of employment, research activity, and prior exposure. The analysis indicates that instructors in all situations can and do employ active learning in their courses. However, with the exception of security of employment, trends in the data are consistent with beliefs about the impact of these factors on usage of active learning. We discuss implications of these results for institutional and departmental policies to facilitate the use of active learning. 
    more » « less
  4. Powell, Roger (Ed.)
    Abstract In the past 30 years, leaders in undergraduate education have called for transformations in science pedagogy to reflect the process of science as well as to develop professional skills, apply new and emerging technologies, and to provide more hands-on experience. These recommendations suggest teaching strategies that incorporate active learning methods that consistently increase learning, conceptual understanding, integration of subject knowledge with skill development, retention of undergraduate students in science, technology, engineering, and mathematics (STEM) majors, and inclusivity. To gain insight into current practices and pedagogy we surveyed members of the American Society of Mammalogists in 2021. The survey consisted of both fixed-response questions (e.g., multiple-choice or Likert-scale) and open-ended questions, each of which asked instructors about the structure and content of a Mammalogy or field Mammalogy course. In these courses, we found that lecturing was still a primary tool for presenting course content or information (x¯= 65% of the time); nonetheless, most instructors reported incorporating other teaching strategies ranging from pausing lectures for students to ask questions to incorporating active learning methods, such as debates or case studies. Most instructors reported incorporating skill development and inclusive teaching practices, and 64% reported that they perceived a need to change or update their Mammalogy courses or their teaching approaches. Overall, our results indicate that Mammalogy instructors have a strong interest in training students to share their appreciation for mammals and are generally engaged in efforts to increase the effectiveness of their teaching through the incorporation of more student-centered approaches to teaching and learning. 
    more » « less
  5. In this paper we provide an update in our research studying science, technology, engineering, and mathematics (STEM) instructor development in classrooms. Our overarching goal is to expand the adoption of active learning in STEM classrooms. For this study, we created a workshop to educate STEM instructors on what active learning is and ways to implement it into their classrooms. Additionally, this workshop sought to provide instructors with evidence-based strategies that focused on reducing student resistance to active learning. This study used a conducted randomized control trial to investigate the impact of this workshop on: (1) how this workshop impacted STEM instructors’ attitudes towards using active learning, (2) their behaviors in using active learning, and (3) their use of strategies for reducing student resistance to active learning. We collected data from 173 instructors and 1676 students. This paper focuses on our preliminary results as well as next steps for the project. Thus far, we have analyzed the impact of the workshop on our instructor’s use of active learning, and the student responses to these changes. 
    more » « less