skip to main content


Title: Association of malleable factors with adoption of research-based instructional strategies in introductory chemistry, mathematics, and physics
Active learning pedagogies are shown to enhance the outcomes of students, particularly in disciplines known for high attrition rates. Despite the demonstrated benefits of active learning, didactic lecture continues to predominate in science, technology, engineering, and mathematics (STEM) courses. Change agents and professional development programs have historically placed emphasis on develop–disseminate efforts for the adoption of research-based instructional strategies (RBIS). With numerous reported barriers and motivators for trying out and adopting active learning, it is unclear to what extent these factors are associated with adoption of RBIS and the effectiveness of change strategies. We present the results of a large-scale, survey-based study of introductory chemistry, mathematics, and physics instructors and their courses in the United States. Herein, we evaluate the association of 17 malleable factors with the tryout and adoption of RBIS. Multilevel logistic regression analyses suggest that several contextual, personal, and teacher thinking factors are associated with different stages of RBIS adoption. These results are also compared with analogous results evaluating the association of these factors with instructors’ time spent lecturing. We offer actionable implications for change agents to provide targeted professional development programming and for institutional leaders to influence the adoption of active learning pedagogies in introductory STEM courses.  more » « less
Award ID(s):
1726126 1726281
NSF-PAR ID:
10382086
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Education
Volume:
7
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Active learning used in science, technology, engineering, and mathematics (STEM) courses has been shown to improve student outcomes. Nevertheless, traditional lecture-orientated approaches endure in these courses. The implementation of teaching practices is a result of many interrelated factors including disciplinary norms, classroom context, and beliefs about learning. Although factors influencing uptake of active learning are known, no study to date has had the statistical power to empirically test the relative association of these factors with active learning when considered collectively. Prior studies have been limited to a single or small number of evaluated factors; in addition, such studies did not capture the nested nature of institutional contexts. We present the results of a multi-institution, large-scale (N = 2382 instructors;N = 1405 departments;N = 749 institutions) survey-based study in the United States to evaluate 17 malleable factors (i.e., influenceable and changeable) that are associated with the amount of time an instructor spends lecturing, a proxy for implementation of active learning strategies, in introductory postsecondary chemistry, mathematics, and physics courses.

    Results

    Regression analyses, using multilevel modeling to account for the nested nature of the data, indicate several evaluated contextual factors, personal factors, and teacher thinking factors were significantly associated with percent of class time lecturing when controlling for other factors used in this study. Quantitative results corroborate prior research in indicating that large class sizes are associated with increased percent time lecturing. Other contextual factors (e.g., classroom setup for small group work) and personal contexts (e.g., participation in scholarship of teaching and learning activities) are associated with a decrease in percent time lecturing.

    Conclusions

    Given the malleable nature of the factors, we offer tangible implications for instructors and administrators to influence the adoption of more active learning strategies in introductory STEM courses.

     
    more » « less
  2. Abstract Background

    There has been a growing interest in characterizing factors influencing teaching decisions of science, technology, engineering, and mathematics (STEM) instructors in order to address the slow uptake of evidence-based instructional practices (EBIPs). This growing body of research has identified contextual factors (e.g., classroom layout, departmental norms) as primary influencers of STEM instructors’ decision to implement EBIPs in their courses. However, models of influences on instructional practices indicate that context is only one type of factor to consider. Other factors fall at the individual level such as instructors’ past teaching experience and their views on learning. Few studies have been able to explore in depth the role of these individual factors on the adoption of EBIPs since it is challenging to control for contextual features when studying current instructors. Moreover, most studies exploring adoption of EBIPs do not take into account the distinctive features of each EBIP and the influence these features may have on the decision to adopt the EBIP. Rather, studies typically explore barriers and drivers to the implementation of EBIPs in general. In this study, we address these gaps in the literature by conducting an in-depth exploration of individual factors and EBIPs’ features that influence nine future STEM instructors’ decisions to incorporate a selected set of EBIPs in their teaching.

    Results

    We had hypothesized that the future instructors would have different reasoning to support their decisions to adopt or not Peer Instruction and the 5E Model as the two EBIPs have distinctive features. However, our results demonstrate that instructors based their decisions on similar factors. In particular, we found that the main drivers of their decisions were (1) the compatibility of the EBIP with their past experiences as students and instructors as well as teaching values and (2) experiences provided in the pedagogical course they were enrolled in.

    Conclusions

    This study demonstrates that when considering the adoption of EBIPs, there is a need to look beyond solely contextual influences on instructor’s decisions to innovate in their courses and explore individual factors. Moreover, professional development programs should leverage their participants past experiences as students and instructors and provide an opportunity for instructors to experience new EBIPs as learners and instructors.

     
    more » « less
  3. Powell, Roger (Ed.)
    Abstract In the past 30 years, leaders in undergraduate education have called for transformations in science pedagogy to reflect the process of science as well as to develop professional skills, apply new and emerging technologies, and to provide more hands-on experience. These recommendations suggest teaching strategies that incorporate active learning methods that consistently increase learning, conceptual understanding, integration of subject knowledge with skill development, retention of undergraduate students in science, technology, engineering, and mathematics (STEM) majors, and inclusivity. To gain insight into current practices and pedagogy we surveyed members of the American Society of Mammalogists in 2021. The survey consisted of both fixed-response questions (e.g., multiple-choice or Likert-scale) and open-ended questions, each of which asked instructors about the structure and content of a Mammalogy or field Mammalogy course. In these courses, we found that lecturing was still a primary tool for presenting course content or information (x¯= 65% of the time); nonetheless, most instructors reported incorporating other teaching strategies ranging from pausing lectures for students to ask questions to incorporating active learning methods, such as debates or case studies. Most instructors reported incorporating skill development and inclusive teaching practices, and 64% reported that they perceived a need to change or update their Mammalogy courses or their teaching approaches. Overall, our results indicate that Mammalogy instructors have a strong interest in training students to share their appreciation for mammals and are generally engaged in efforts to increase the effectiveness of their teaching through the incorporation of more student-centered approaches to teaching and learning. 
    more » « less
  4. null (Ed.)
    This research paper studies the challenges that mathematics faculty and graduate teaching assistants (GTAs) faced when moving active and collaborative calculus courses from in-person to virtual instruction. As part of a larger pedagogical change project (described below), the math department at a public Research-1 university began transitioning pre-calculus and calculus courses to an active and collaborative learning (ACL) format in Fall 2019. The change began with the introduction of collaborative worksheets in recitations which were led by GTAs and supported by undergraduate learning assistants (LAs). Students recitation periods collaboratively solving the worksheet problems on whiteboards. When COVID-19 forced the rapid transition to online teaching, these ACL efforts faced an array of challenges. Faculty and GTA reflections on the changes to teaching and learning provide insight into how instructional staff can be supported in implementing ACL across various modes of instruction. The calculus teaching change efforts discussed in this paper are part of an NSF-supported project that aims to make ACL the default method of instruction in highly enrolled gateway STEM courses across the institution. The theoretical framework for the project builds on existing work on grassroots change in higher education (Kezar and Lester, 2011) to study the effect of communities of practice on changing teaching culture. The project uses course-based communities of practice (Wenger, 1999) that include instructors, GTAs, and LAs working together to design and enact teaching change in the targeted courses alongside ongoing professional development for GTAs and LAs. Six faculty and five GTAs involved in the teaching change effort in mathematics were interviewed after the Spring 2020 semester ended. Interview questions focused on faculty and GTA experiences implementing active learning after the rapid transition to online teaching. A grounded coding scheme was used to identify common themes in the challenges faced by instructors and GTAs as they moved online and in the impacts of technology, LA support, and the department community of practice on the move to online teaching. Technology, including both access and capabilities, emerged as a common barrier to student engagement. A particular barrier was students’ reluctance to share video or participate orally in sessions that were being recorded, making group work more difficult than it had been in a physical classroom. In addition, most students lacked access to a tablet for freehand writing, presenting a significant hurdle for sharing mathematical notation when physical whiteboards were no longer an option. These challenges point to the importance of incorporating flexibility in active learning implementation and in the professional development that supports teaching changes toward active learning, since what is conceived for a collaborative physical classroom may be implemented in a much different environment. The full paper will present a detailed analysis of the data to better understand how faculty and GTA experiences in the transition to online delivery can inform planning and professional development as the larger institutional change effort moves forward both in mathematics and in other STEM fields. 
    more » « less
  5. Abstract

    The COVID‐19 pandemic has created new challenges for instructors who seek high‐impact educational practices that can be facilitated online without creating excessive burdens with technology, grading, or enforcement of honor codes. These practices must also account for the possibility that some students may need to join courses asynchronously and have limited or unreliable connectivity. Of the American Association of Colleges and University's list of 11 high‐impact educational practices, writing‐intensive courses may be the easiest for science faculty to adopt during these difficult times. Not only can writing assignments promote conceptual learning, they can also deepen student engagement with the subject matter and with each other. Furthermore, writing assignments can be incredibly flexible in terms of how they are implemented online and can be designed to reduce the possibility of cheating and plagiarism. To accelerate the adoption of writing pedagogies, we summarize evidence‐based characteristics of effective writing assignments and offer a sample writing assignment from an introductory ecology course. We then suggest five strategies to help instructors manage their workload. Although the details of the sample assignment may be particular to our course, this framework is general enough to be adapted to most science courses, including those taught in‐person, those taught online, and those that must be able to switch quickly between the two.

     
    more » « less