There are currently no effective biomarkers for diagnosing Parkinson’s disease (PD) or tracking its progression. Here, we developed an artificial intelligence (AI) model to detect PD and track its progression from nocturnal breathing signals. The model was evaluated on a large dataset comprising 7,671 individuals, using data from several hospitals in the United States, as well as multiple public datasets. The AI model can detect PD with an area-under-the-curve of 0.90 and 0.85 on held-out and external test sets, respectively. The AI model can also estimate PD severity and progression in accordance with the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (R = 0.94, P = 3.6 × 10–25). The AI model uses an attention layer that allows for interpreting its predictions with respect to sleep and electroencephalogram. Moreover, the model can assess PD in the home setting in a touchless manner, by extracting breathing from radio waves that bounce off a person’s body during sleep. Our study demonstrates the feasibility of objective, noninvasive, at-home assessment of PD, and also provides initial evidence that this AI model may be useful for risk assessment before clinical diagnosis.
more »
« less
Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals
Abstract There are currently no effective biomarkers for diagnosing Parkinson’s disease (PD) or tracking its progression. Here, we developed an artificial intelligence (AI) model to detect PD and track its progression from nocturnal breathing signals. The model was evaluated on a large dataset comprising 7,671 individuals, using data from several hospitals in the United States, as well as multiple public datasets. The AI model can detect PD with an area-under-the-curve of 0.90 and 0.85 on held-out and external test sets, respectively. The AI model can also estimate PD severity and progression in accordance with the Movement Disorder Society Unified Parkinson’s Disease Rating Scale ( R = 0.94, P = 3.6 × 10 –25 ). The AI model uses an attention layer that allows for interpreting its predictions with respect to sleep and electroencephalogram. Moreover, the model can assess PD in the home setting in a touchless manner, by extracting breathing from radio waves that bounce off a person’s body during sleep. Our study demonstrates the feasibility of objective, noninvasive, at-home assessment of PD, and also provides initial evidence that this AI model may be useful for risk assessment before clinical diagnosis.
more »
« less
- Award ID(s):
- 2014391
- PAR ID:
- 10382146
- Date Published:
- Journal Name:
- Nature Medicine
- Volume:
- 28
- Issue:
- 10
- ISSN:
- 1078-8956
- Page Range / eLocation ID:
- 2207 to 2215
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Unified Parkinson’s Disease Rating Scale (UPDRS) is used to recognize patients with Parkinson’s disease (PD) and rate its severity. The rating is crucial for disease progression monitoring and treatment adjustment. This study aims to advance the capabilities of PD management by developing an innovative framework that integrates deep learning with wearable sensor technology to enhance the precision of UPDRS assessments. We introduce a series of deep learning models to estimate UPDRS Part III scores, utilizing motion data from wearable sensors. Our approach leverages a novel Multi-shared-task Self-supervised Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) framework that processes raw gyroscope signals and their spectrogram representations. This technique aims to refine the estimation accuracy of PD severity during naturalistic human activities. Utilizing 526 min of data from 24 PD patients engaged in everyday activities, our methodology demonstrates a strong correlation of 0.89 between estimated and clinically assessed UPDRS-III scores. This model outperforms the benchmark set by single and multichannel CNN, LSTM, and CNN-LSTM models and establishes a new standard in UPDRS-III score estimation for free-body movements compared to recent state-of-the-art methods. These results signify a substantial step forward in bioengineering applications for PD monitoring, providing a robust framework for reliable and continuous assessment of PD symptoms in daily living settings.more » « less
-
Parkinson’s disease (PD) is a neurological progressive movement disorder, affecting more than 10 million people globally. PD demands a longitudinal assessment of symptoms to monitor the disease progression and manage the treatments. Existing assessment methods require patients with PD (PwPD) to visit a clinic every 3–6 months to perform movement assessments conducted by trained clinicians. However, periodic visits pose barriers as PwPDs have limited mobility, and healthcare cost increases. Hence, there is a strong demand for using telemedicine technologies for assessing PwPDs in remote settings. In this work, we present an in-home telemedicine kit, named iTex (intelligent Textile), which is a patient-centered design to carry out accessible tele-assessments of movement symptoms in people with PD. iTex is composed of a pair of smart textile gloves connected to a customized embedded tablet. iTex gloves are integrated with flex sensors on the fingers and inertial measurement unit (IMU) and have an onboard microcontroller unit with IoT (Internet of Things) capabilities including data storage and wireless communication. The gloves acquire the sensor data wirelessly to monitor various hand movements such as finger tapping, hand opening and closing, and other movement tasks. The gloves are connected to a customized tablet computer acting as an IoT device, configured to host a wireless access point, and host an MQTT broker and a time-series database server. The tablet also employs a patient-centered interface to guide PwPDs through the movement exam protocol. The system was deployed in four PwPDs who used iTex at home independently for a week. They performed the test independently before and after medication intake. Later, we performed data analysis of the in-home study and created a feature set. The study findings reported that the iTex gloves were capable to collect movement-related data and distinguish between pre-medication and post-medication cases in a majority of the participants. The IoT infrastructure demonstrated robust performance in home settings and offered minimum barriers for the assessment exams and the data communication with a remote server. In the post-study survey, all four participants expressed that the system was easy to use and poses a minimum barrier to performing the test independently. The present findings indicate that the iTex glove system has the potential for periodic and objective assessment of PD motor symptoms in remote settings.more » « less
-
null (Ed.)Abstract Background Unified Parkinson Disease Rating Scale-part III (UPDRS III) is part of the standard clinical examination performed to track the severity of Parkinson’s disease (PD) motor complications. Wearable technologies could be used to reduce the need for on-site clinical examinations of people with Parkinson’s disease (PwP) and provide a reliable and continuous estimation of the severity of PD at home. The reported estimation can be used to successfully adjust the dose and interval of PD medications. Methods We developed a novel algorithm for unobtrusive and continuous UPDRS-III estimation at home using two wearable inertial sensors mounted on the wrist and ankle. We used the ensemble of three deep-learning models to detect UPDRS-III-related patterns from a combination of hand-crafted features, raw temporal signals, and their time–frequency representation. Specifically, we used a dual-channel, Long Short-Term Memory (LSTM) for hand-crafted features, 1D Convolutional Neural Network (CNN)-LSTM for raw signals, and 2D CNN-LSTM for time–frequency data. We utilized transfer learning from activity recognition data and proposed a two-stage training for the CNN-LSTM networks to cope with the limited amount of data. Results The algorithm was evaluated on gyroscope data from 24 PwP as they performed different daily living activities. The estimated UPDRS-III scores had a correlation of $$0.79\, (\textit{p}<0.0001)$$ 0.79 ( p < 0.0001 ) and a mean absolute error of 5.95 with the clinical examination scores without requiring the patients to perform any specific tasks. Conclusion Our analysis demonstrates the potential of our algorithm for estimating PD severity scores unobtrusively at home. Such an algorithm could provide the required motor-complication measurements without unnecessary clinical visits and help the treating physician provide effective management of the disease.more » « less
-
The ability to assess sleep at home, capture sleep stages, and detect the occurrence of apnea (without on-body sensors) simply by analyzing the radio waves bouncing off people's bodies while they sleep is quite powerful. Such a capability would allow for longitudinal data collection in patients' homes, informing our understanding of sleep and its interaction with various diseases and their therapeutic responses, both in clinical trials and routine care. In this article, we develop an advanced machine learning algorithm for passively monitoring sleep and nocturnal breathing from radio waves reflected off people while asleep. Validation results in comparison with the gold standard (i.e., polysomnography) (n=849) demonstrate that the model captures the sleep hypnogram (with an accuracy of 81% for 30-second epochs categorized into Wake, Light Sleep, Deep Sleep, or REM), detects sleep apnea (AUROC = 0.88), and measures the patient's Apnea-Hypopnea Index (ICC=0.95; 95% CI = [0.93, 0.97]). Notably, the model exhibits equitable performance across race, sex, and age. Moreover, the model uncovers informative interactions between sleep stages and a range of diseases including neurological, psychiatric, cardiovascular, and immunological disorders. These findings not only hold promise for clinical practice and interventional trials but also underscore the significance of sleep as a fundamental component in understanding and managing various diseases.more » « less