skip to main content


Title: iTex Gloves: Design and In-Home Evaluation of an E-Textile Glove System for Tele-Assessment of Parkinson’s Disease
Parkinson’s disease (PD) is a neurological progressive movement disorder, affecting more than 10 million people globally. PD demands a longitudinal assessment of symptoms to monitor the disease progression and manage the treatments. Existing assessment methods require patients with PD (PwPD) to visit a clinic every 3–6 months to perform movement assessments conducted by trained clinicians. However, periodic visits pose barriers as PwPDs have limited mobility, and healthcare cost increases. Hence, there is a strong demand for using telemedicine technologies for assessing PwPDs in remote settings. In this work, we present an in-home telemedicine kit, named iTex (intelligent Textile), which is a patient-centered design to carry out accessible tele-assessments of movement symptoms in people with PD. iTex is composed of a pair of smart textile gloves connected to a customized embedded tablet. iTex gloves are integrated with flex sensors on the fingers and inertial measurement unit (IMU) and have an onboard microcontroller unit with IoT (Internet of Things) capabilities including data storage and wireless communication. The gloves acquire the sensor data wirelessly to monitor various hand movements such as finger tapping, hand opening and closing, and other movement tasks. The gloves are connected to a customized tablet computer acting as an IoT device, configured to host a wireless access point, and host an MQTT broker and a time-series database server. The tablet also employs a patient-centered interface to guide PwPDs through the movement exam protocol. The system was deployed in four PwPDs who used iTex at home independently for a week. They performed the test independently before and after medication intake. Later, we performed data analysis of the in-home study and created a feature set. The study findings reported that the iTex gloves were capable to collect movement-related data and distinguish between pre-medication and post-medication cases in a majority of the participants. The IoT infrastructure demonstrated robust performance in home settings and offered minimum barriers for the assessment exams and the data communication with a remote server. In the post-study survey, all four participants expressed that the system was easy to use and poses a minimum barrier to performing the test independently. The present findings indicate that the iTex glove system has the potential for periodic and objective assessment of PD motor symptoms in remote settings.  more » « less
Award ID(s):
1652538 1919135
NSF-PAR ID:
10464737
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
23
Issue:
6
ISSN:
1424-8220
Page Range / eLocation ID:
2877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research in the area of internet-of-things, cyber physical- systems, and smart health often employ sensor systems at residences for continuous monitoring. Such research oriented residential monitoring systems (RRMSs) usually face two major challenges, long-term reliable operation management and validation of system functionality with minimal human effort. Targeting these two challenges, this paper describes a monitor of monitoring systems with ground-truth validation capabilities, M2G. It consists of two subsystems, the Monitor2 system and the Ground-truth validation system. The Monitor2 system encapsulates a flexible set of general-purpose components to monitor the operation and connectivity of heterogeneous sensor devices (e.g. smart watches, smart phones, microphones, beacons, etc.), a local base-station, as well as a cloud server. It provides a user-friendly interface and supports different types of RRMSs in various contexts. The system also features a ground truth validation system to support obtaining ground truth in the field. Additionally, customized alerts can be sent to remote administrators and other personnel to report any dysfunction or inaccuracy of the system in real time. M2G is applied to three very different case studies: the M2FED system which monitors family eating dynamics, an in-home wireless sensing system for monitoring nighttime agitation, and the BESI system which monitors behavioral and environmental parameters to predict health events and to provide interventions. The results indicate that M2G is a comprehensive system that (i) requires small cost in time and effort to adapt to an existing RRMS, (ii) provides reliable data collection and reduction in data loss by detecting faults in real-time, and (iii) provides a convenient and timely ground truth validation facility. 
    more » « less
  2. Lay Summary

    This study tested the use of a tablet in the behavioral assessment of young children with autism. Children watched a series of developmentally appropriate movies and their facial expressions were recorded using the camera embedded in the tablet. Results suggest that computational assessments of facial expressions may be useful in early detection of symptoms of autism.

     
    more » « less
  3. null (Ed.)
    Abstract Levodopa-induced dyskinesias are abnormal involuntary movements experienced by the majority of persons with Parkinson’s disease (PwP) at some point over the course of the disease. Choreiform as the most common phenomenology of levodopa-induced dyskinesias can be managed by adjusting the dose/frequency of PD medication(s) based on a PwP’s motor fluctuations over a typical day. We developed a sensor-based assessment system to provide such information. We used movement data collected from the upper and lower extremities of 15 PwPs along with a deep recurrent model to estimate dyskinesia severity as they perform different activities of daily living (ADL). Subjects performed a variety of ADLs during a 4-h period while their dyskinesia severity was rated by the movement disorder experts. The estimated dyskinesia severity scores from our model correlated highly with the expert-rated scores ( r = 0.87 ( p < 0.001)), which was higher than the performance of linear regression that is commonly used for dyskinesia estimation ( r = 0.81 ( p < 0.001)). Our model provided consistent performance at different ADLs with minimum r = 0.70 (during walking) to maximum r = 0.84 (drinking) in comparison to linear regression with r = 0.00 (walking) to r = 0.76 (cutting food). These findings suggest that when our model is applied to at-home sensor data, it can provide an accurate picture of changes of dyskinesia severity facilitating effective medication adjustments. 
    more » « less
  4. Background Over the past 2 decades, various desktop and mobile telemedicine systems have been developed to support communication and care coordination among distributed medical teams. However, in the hands-busy care environment, such technologies could become cumbersome because they require medical professionals to manually operate them. Smart glasses have been gaining momentum because of their advantages in enabling hands-free operation and see-what-I-see video-based consultation. Previous research has tested this novel technology in different health care settings. Objective The aim of this study was to review how smart glasses were designed, used, and evaluated as a telemedicine tool to support distributed care coordination and communication, as well as highlight the potential benefits and limitations regarding medical professionals’ use of smart glasses in practice. Methods We conducted a literature search in 6 databases that cover research within both health care and computer science domains. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology to review articles. A total of 5865 articles were retrieved and screened by 3 researchers, with 21 (0.36%) articles included for in-depth analysis. Results All of the reviewed articles (21/21, 100%) used off-the-shelf smart glass device and videoconferencing software, which had a high level of technology readiness for real-world use and deployment in care settings. The common system features used and evaluated in these studies included video and audio streaming, annotation, augmented reality, and hands-free interactions. These studies focused on evaluating the technical feasibility, effectiveness, and user experience of smart glasses. Although the smart glass technology has demonstrated numerous benefits and high levels of user acceptance, the reviewed studies noted a variety of barriers to successful adoption of this novel technology in actual care settings, including technical limitations, human factors and ergonomics, privacy and security issues, and organizational challenges. Conclusions User-centered system design, improved hardware performance, and software reliability are needed to realize the potential of smart glasses. More research is needed to examine and evaluate medical professionals’ needs, preferences, and perceptions, as well as elucidate how smart glasses affect the clinical workflow in complex care environments. Our findings inform the design, implementation, and evaluation of smart glasses that will improve organizational and patient outcomes. 
    more » « less
  5. Background The surge of telemedicine use during the early stages of the COVID-19 pandemic has been well documented. However, scarce evidence considers the use of telemedicine in the subsequent period. Objective This study aims to evaluate use patterns of video-based telemedicine visits for ambulatory care and urgent care provision over the course of recurring pandemic waves in 1 large health system in New York City (NYC) and what this means for health care delivery. Methods Retrospective electronic health record (EHR) data of patients from January 1, 2020, to February 28, 2022, were used to longitudinally track and analyze telemedicine and in-person visit volumes across ambulatory care specialties and urgent care, as well as compare them to a prepandemic baseline (June-November 2019). Diagnosis codes to differentiate suspected COVID-19 visits from non–COVID-19 visits, as well as evaluating COVID-19–based telemedicine use over time, were compared to the total number of COVID-19–positive cases in the same geographic region (city level). The time series data were segmented based on change-point analysis, and variances in visit trends were compared between the segments. Results The emergence of COVID-19 prompted an early increase in the number of telemedicine visits across the urgent care and ambulatory care settings. This use continued throughout the pandemic at a much higher level than the prepandemic baseline for both COVID-19 and non–COVID-19 suspected visits, despite the fluctuation in COVID-19 cases throughout the pandemic and the resumption of in-person clinical services. The use of telemedicine-based urgent care services for COVID-19 suspected visits showed more variance in response to each pandemic wave, but telemedicine visits for ambulatory care have remained relatively steady after the initial crisis period. During the Omicron wave, the use of all visit types, including in-person activities, decreased. Patients between 25 and 34 years of age were the largest users of telemedicine-based urgent care. Patient satisfaction with telemedicine-based urgent care remained high despite the rapid scaling of services to meet increased demand. Conclusions The trend of the increased use of telemedicine as a means of health care delivery relative to the pre–COVID-19 baseline has been maintained throughout the later pandemic periods despite fluctuating COVID-19 cases and the resumption of in-person care delivery. Overall satisfaction with telemedicine-based care is also high. The trends in telemedicine use suggest that telemedicine-based health care delivery has become a mainstream and sustained supplement to in-person-based ambulatory care, particularly for younger patients, for both urgent and nonurgent care needs. These findings have implications for the health care delivery system, including practice leaders, insurers, and policymakers. Further investigation is needed to evaluate telemedicine adoption by key demographics, identify ongoing barriers to adoption, and explore the impacts of sustained use of telemedicine on health care outcomes and experience. 
    more » « less