Introduction: Increased use of telemedicine could potentially streamline influenza diagnosis and reduce transmission. However, telemedicine diagnoses are dependent on accurate symptom reporting by patients. If patients disagree with clinicians on symptoms, previously derived diagnostic rules may be inaccurate. Methods: We performed a secondary data analysis of a prospective, nonrandomized cohort study at a university student health center. Patients who reported an upper respiratory complaint were required to report symptoms, and their clinician was required to report the same list of symptoms. We examined the performance of 5 previously developed clinical decision rules (CDRs) for influenza on both symptom reports. These predictions were compared against PCR diagnoses. We analyzed the agreement between symptom reports, and we built new predictive models using both sets of data. Results: CDR performance was always lower for the patient-reported symptom data, compared with clinician-reported symptom data. CDRs often resulted in different predictions for the same individual, driven by disagreement in symptom reporting. We were able to fit new models to the patient-reported data, which performed slightly worse than previously derived CDRs. These models and models built on clinician-reported data both suffered from calibration issues. Discussion: Patients and clinicians frequently disagree about symptom presence, which leads to reduced accuracy when CDRs built with clinician data are applied to patient-reported symptoms. Predictive models using patient-reported symptom data performed worse than models using clinicianreported data and prior results in the literature. However, the differences are minor, and developing new models with more data may be possible. ( J Am Board Fam Med 2023;00:000–000.)
more »
« less
iTex Gloves: Design and In-Home Evaluation of an E-Textile Glove System for Tele-Assessment of Parkinson’s Disease
Parkinson’s disease (PD) is a neurological progressive movement disorder, affecting more than 10 million people globally. PD demands a longitudinal assessment of symptoms to monitor the disease progression and manage the treatments. Existing assessment methods require patients with PD (PwPD) to visit a clinic every 3–6 months to perform movement assessments conducted by trained clinicians. However, periodic visits pose barriers as PwPDs have limited mobility, and healthcare cost increases. Hence, there is a strong demand for using telemedicine technologies for assessing PwPDs in remote settings. In this work, we present an in-home telemedicine kit, named iTex (intelligent Textile), which is a patient-centered design to carry out accessible tele-assessments of movement symptoms in people with PD. iTex is composed of a pair of smart textile gloves connected to a customized embedded tablet. iTex gloves are integrated with flex sensors on the fingers and inertial measurement unit (IMU) and have an onboard microcontroller unit with IoT (Internet of Things) capabilities including data storage and wireless communication. The gloves acquire the sensor data wirelessly to monitor various hand movements such as finger tapping, hand opening and closing, and other movement tasks. The gloves are connected to a customized tablet computer acting as an IoT device, configured to host a wireless access point, and host an MQTT broker and a time-series database server. The tablet also employs a patient-centered interface to guide PwPDs through the movement exam protocol. The system was deployed in four PwPDs who used iTex at home independently for a week. They performed the test independently before and after medication intake. Later, we performed data analysis of the in-home study and created a feature set. The study findings reported that the iTex gloves were capable to collect movement-related data and distinguish between pre-medication and post-medication cases in a majority of the participants. The IoT infrastructure demonstrated robust performance in home settings and offered minimum barriers for the assessment exams and the data communication with a remote server. In the post-study survey, all four participants expressed that the system was easy to use and poses a minimum barrier to performing the test independently. The present findings indicate that the iTex glove system has the potential for periodic and objective assessment of PD motor symptoms in remote settings.
more »
« less
- PAR ID:
- 10464737
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 23
- Issue:
- 6
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 2877
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Levodopa-induced dyskinesias are abnormal involuntary movements experienced by the majority of persons with Parkinson’s disease (PwP) at some point over the course of the disease. Choreiform as the most common phenomenology of levodopa-induced dyskinesias can be managed by adjusting the dose/frequency of PD medication(s) based on a PwP’s motor fluctuations over a typical day. We developed a sensor-based assessment system to provide such information. We used movement data collected from the upper and lower extremities of 15 PwPs along with a deep recurrent model to estimate dyskinesia severity as they perform different activities of daily living (ADL). Subjects performed a variety of ADLs during a 4-h period while their dyskinesia severity was rated by the movement disorder experts. The estimated dyskinesia severity scores from our model correlated highly with the expert-rated scores ( r = 0.87 ( p < 0.001)), which was higher than the performance of linear regression that is commonly used for dyskinesia estimation ( r = 0.81 ( p < 0.001)). Our model provided consistent performance at different ADLs with minimum r = 0.70 (during walking) to maximum r = 0.84 (drinking) in comparison to linear regression with r = 0.00 (walking) to r = 0.76 (cutting food). These findings suggest that when our model is applied to at-home sensor data, it can provide an accurate picture of changes of dyskinesia severity facilitating effective medication adjustments.more » « less
-
Currently doctors rely on tools such as the Unified Parkinson’s Disease Rating Scale (MDS-UDPRS) and the Scale for the Assessment and Rating of Ataxia (SARA) to make diagnoses for movement disorders based on clinical observations of a patient’s motor movement. Observation-based assessments however are inherently subjective and can differ by person. Moreover, different movement disorders show overlapping symptoms, challenging neurologists to make a correct diagnosis based on eyesight alone. In this work, we create an intelligent interface to highlight movements and gestures that are indicative of a movement disorder to observing doctors. First, we analyzed the walking patterns of 43 participants with Parkinson’s Disease (PD), 60 participants with ataxia, and 52 participants with no movement disorder to find ten metrics that can be used to distinguish PD from ataxia. Next, we designed an interface that provides context to the gestures that are relevant to a movement disorder diagnosis. Finally, we surveyed two neurologists (one who specializes in PD and the other who specializes in ataxia) on how useful this interface is for making a diagnosis. Our results not only showcase additional metrics that can be used to evaluate movement disorders quantitatively but also outline steps to be taken when designing an interface for these kinds of diagnostic tasks.more » « less
-
null (Ed.)Abstract Pathological hand tremor (PHT) is a common symptom of Parkinson’s disease (PD) and essential tremor (ET), which affects manual targeting, motor coordination, and movement kinetics. Effective treatment and management of the symptoms relies on the correct and in-time diagnosis of the affected individuals, where the characteristics of PHT serve as an imperative metric for this purpose. Due to the overlapping features of the corresponding symptoms, however, a high level of expertise and specialized diagnostic methodologies are required to correctly distinguish PD from ET. In this work, we propose the data-driven $$\text {NeurDNet}$$ NeurDNet model, which processes the kinematics of the hand in the affected individuals and classifies the patients into PD or ET. $$\text {NeurDNet}$$ NeurDNet is trained over 90 hours of hand motion signals consisting of 250 tremor assessments from 81 patients, recorded at the London Movement Disorders Centre, ON, Canada. The $$\text {NeurDNet}$$ NeurDNet outperforms its state-of-the-art counterparts achieving exceptional differential diagnosis accuracy of $$95.55\%$$ 95.55 % . In addition, using the explainability and interpretability measures for machine learning models, clinically viable and statistically significant insights on how the data-driven model discriminates between the two groups of patients are achieved.more » « less
-
Research shows formative assessments substantially strengthen learning and support summative assessment/evaluation practices. These practices are not widely applied in ATE's professional development (PD) efforts. This study focuses on participant teachers' assessment involvement to increase student learning and enhance outcome evaluations. We surveyed all principal investigators of ATE projects in 2022 who applied assessments in their 2021 PD efforts (N=70). Findings show that a minority of PD efforts apply formative assessment practices to strengthen PD outcomes or meet ATE's evaluation specifications. Assessment practices were most prevalent for summative purposes at the close of PD activity; a large majority assessed teachers' interest and learning in the PD and their intentions to use and teach what was learned on return to their classrooms. A third or less followed up to assess outcomes in teachers' schools. Similarly, thirty percent or less addressed matters of context at any stage of the PD efforts, and a few, 11 percent, followed up to assess the context in the schools. Concomitantly, the findings show where and how attention to formative assessment in the PD learning process can increase teacher involvement in assessment practices, making PD instruction more effective and strengthening outcome evaluations in participant teachers' home classrooms.more » « less
An official website of the United States government

