Abstract Radium isotopes are produced through the decay of thorium in sediments and are soluble in seawater; thus, they are useful for tracing ocean boundary‐derived inputs to the ocean. Here we apply radium isotopes to study continental inputs and water residence times in the Arctic Ocean, where land‐ocean interactions are currently changing in response to rising air and sea temperatures. We present the distributions of radium isotopes measured on the 2015 U.S. GEOTRACES transect in the Western Arctic Ocean and combine this data set with historical radium observations in the Chukchi Sea and Canada Basin. The highest activities of radium‐228 were observed in the Transpolar Drift and the Chukchi shelfbreak jet, signaling that these currents are heavily influenced by interactions with shelf sediments. The ventilation of the halocline with respect to inputs from the Chukchi shelf occurs on time scales of ≤19–23 years. Intermediate water ventilation time scales for the Makarov and Canada Basins were determined to be ~20 and >30 years, respectively, while deep water residence times in these basins were on the order of centuries. The radium distributions and residence times described in this study serve as a baseline for future studies investigating the impacts of climate change on the Arctic Ocean.
more »
« less
Spatial Complexity in Dissolved Organic Matter and Trace Elements Driven by Hydrography and Freshwater Input Across the Arctic Ocean During 2015 Arctic GEOTRACES Expeditions
Abstract This study traces dissolved organic matter (DOM) in different water masses of the Arctic Ocean and its effect on the distributions of trace elements (TEs; Fe, Cu, Mn, Ni, Zn, Cd) using fluorescent properties of DOM and the terrigenous biomarker lignin. The Nansen, Amundsen, and Makarov Basins were characterized by the influence of Atlantic water and the fluvial discharge of the Siberian Rivers with high concentrations of terrigenous DOM (tDOM). The Canada Basin and the Chukchi Sea were characterized by Pacific water, modified through contact with productive shelf sediments with elevated levels of marine DOM. Within the surface layer of the Beaufort Gyre, meteoric water (river water and precipitation) was characterized by low concentrations of lignin and tDOM fluorescence proxies as DOM is removed during freezing. High‐resolution in situ fluorescence profiles revealed that DOM distribution closely followed isopycnals, indicating the strong influence of sea‐ice formation and melt, which was also reflected in strong correlations between DOM fluorescence and brine contributions. The relationship of DOM and hydrography to TEs showed that terrigenous and marine DOM were likely carriers of dissolved Fe, Ni, Cu from the Eurasian shelves into the central Arctic Ocean. Chukchi shelf sediments were important sources of dCd, dZn, and dNi, as well as marine ligands that bind and carry these TEs offshore within the upper halocline in the Canada Basin. Our data suggest that tDOM components represent stronger ligands relative to marine DOM components, potentially facilitating the long‐range transport of TE to the North Atlantic.
more »
« less
- Award ID(s):
- 2023500
- PAR ID:
- 10382168
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 127
- Issue:
- 11
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Newly ventilated winter water (NVWW) is a cold, salty, nutrient‐rich water mass that is critical for supporting the ecosystem of the western Arctic Ocean and for ventilating the halocline in the Canada Basin. While the formation of NVWW is well‐documented on the Chukchi shelf, there remain fundamental questions regarding its formation on the western Beaufort shelf. In this study, we use hydrographic data from two late‐fall cruises in 2018 and 2022 to investigate the roles of sea ice production and wind‐driven upwelling in the formation of NVWW and the implications for the nutrient content of the water. For each of the shipboard transects, we apply proxies for the extent of the winter water formation and the strength of the associated upwelling, respectively. It is demonstrated that the NVWW attains higher levels of nitrate due to two factors: (a) more active formation of the water associated with enhanced sea ice production and (b) more extensive upwelling of water high in nutrients from the basin to the shelf following an easterly wind event. The latter process would be less common on the wide Chukchi shelf. These findings have significant implications for the regional primary production.more » « less
-
Abstract A high‐resolution regional ocean model together with moored hydrographic and velocity measurements is used to identify the pathways and mechanisms by which Pacific water, modified over the Chukchi shelf, crosses the shelf break into the Canada Basin. Most of the Pacific water flowing into the Arctic Ocean through Bering Strait enters the Canada Basin through Barrow Canyon. Strong advection allows the water to cross the shelf break and exit the shelf. Wind forcing plays little role in this process. Some of the outflowing water from Barrow Canyon flows to the east into the Beaufort Sea; however, approximately 0.4 to 0.5 Sv turns to the west forming the newly identified Chukchi Slope Current. This transport occurs at all times of year, channeling both summer and winter waters from the shelf to the Canada Basin. The model indicates that approximately 75% of this water was exposed to the mixed layer within the Chukchi Sea, while the remaining 25% was able to cross the shelf during the stratified summer before convection commences in late fall. We view the Sv of the Chukchi Slope Current as replacing Beaufort Gyre water that would have come from the east in the absence of the cross‐topography flow in Barrow Canyon. The weak eastward flow on the Beaufort slope is also consistent with the local disruption of the Beaufort Gyre by the Barrow Canyon outflow.more » « less
-
Abstract. Biogeochemical cycling in the semi-enclosed Arctic Ocean is stronglyinfluenced by land–ocean transport of carbon and other elements and isvulnerable to environmental and climate changes. Sediments of the ArcticOcean are an important part of biogeochemical cycling in the Arctic andprovide the opportunity to study present and historical input and the fate oforganic matter (e.g., through permafrost thawing). Comprehensive sedimentary records are required to compare differencesbetween the Arctic regions and to study Arctic biogeochemical budgets. Tothis end, the Circum-Arctic Sediment CArbon DatabasE (CASCADE) wasestablished to curate data primarily on concentrations of organic carbon(OC) and OC isotopes (δ13C, Δ14C) yet also ontotal N (TN) as well as terrigenous biomarkers and other sedimentgeochemical and physical properties. This new database builds on thepublished literature and earlier unpublished records through an extensiveinternational community collaboration. This paper describes the establishment, structure and current status ofCASCADE. The first public version includes OC concentrations in surfacesediments at 4244 oceanographic stations including 2317 with TNconcentrations, 1555 with δ13C-OC values and 268 with Δ14C-OC values and 653 records with quantified terrigenous biomarkers(high-molecular-weight n-alkanes, n-alkanoic acids and lignin phenols).CASCADE also includes data from 326 sediment cores, retrieved by shallowbox or multi-coring, deep gravity/piston coring, or sea-bottom drilling.The comprehensive dataset reveals large-scale features of both OC contentand OC sources between the shelf sea recipients. This offers insight intorelease of pre-aged terrigenous OC to the East Siberian Arctic shelf andyounger terrigenous OC to the Kara Sea. Circum-Arctic sediments therebyreveal patterns of terrestrial OC remobilization and provide clues about thawing of permafrost. CASCADE enables synoptic analysis of OC in Arctic Ocean sediments andfacilitates a wide array of future empirical and modeling studies of theArctic carbon cycle. The database is openly and freely available online(https://doi.org/10.17043/cascade; Martens et al., 2021), is provided in variousmachine-readable data formats (data tables, GIS shapefile, GIS raster), andalso provides ways for contributing data for future CASCADE versions. Wewill continuously update CASCADE with newly published and contributed dataover the foreseeable future as part of the database management of the BolinCentre for Climate Research at Stockholm University.more » « less
-
Abstract Radium isotopes, which are sourced from sediments, are useful tools for studying potential climate‐driven changes in the transfer of shelf‐derived elements to the open Arctic Ocean. Here we present observations of radium‐228 and radium‐226 from the Siberian Arctic, focusing on the shelf‐basin boundary north of the Laptev and East Siberian Seas. Water isotopes and nutrients are used to deconvolve the contributions from different water masses in the study region, and modeled currents and water parcel back‐trajectories provide insights on water pathways and residence times. High radium levels and fractions of meteoric water, along with modeled water parcel back‐trajectories, indicate that shelf‐ and river‐influenced water left the East Siberian Shelf around 170°E in 2021; this is likely where the Transpolar Drift was entering the central Arctic. A transect extending from the East Siberian Slope into the basin is used to estimate a radium‐228 flux of 2.67 × 107atoms m−2 d−1(possible range of 1.23 × 107–1.04 × 108atoms m−2 d−1) from slope sediments, which is comparable to slope fluxes in other regions of the world. A box model is used to determine that the flux of radium‐228 from the Laptev and East Siberian Shelves is 9.03 × 107atoms m−2 d−1(possible range of 3.87 × 107–1.56 × 108atoms m−2 d−1), similar to previously estimated fluxes from the Chukchi Shelf. These three shelves contribute a disproportionately high amount of radium to the Arctic, highlighting their importance in regulating the chemistry of Arctic surface waters.more » « less
An official website of the United States government
