skip to main content


Title: A non-destructive approach for measuring rice panicle-level photosynthetic responses using 3D-image reconstruction
Abstract Background

Our understanding of the physiological responses of rice inflorescence (panicle) to environmental stresses is limited by the challenge of accurately determining panicle photosynthetic parameters and their impact on grain yield. This is primarily due to the lack of a suitable gas exchange methodology for panicles and non-destructive methods to accurately determine panicle surface area.

Results

To address these challenges, we have developed a custom panicle gas exchange cylinder compatible with the LiCor 6800 Infra-red Gas Analyzer. Accurate surface area measurements were determined using 3D panicle imaging to normalize the panicle-level photosynthetic measurements. We observed differential responses in both panicle and flag leaf for two temperate Japonica rice genotypes (accessions TEJ-1 and TEJ-2) exposed to heat stress during early grain filling. There was a notable divergence in the relative photosynthetic contribution of flag leaf and panicles for the heat-tolerant genotype (TEJ-2) compared to the sensitive genotype (TEJ-1).

Conclusion

The novelty of this method is the non-destructive and accurate determination of panicle area and photosynthetic parameters, enabling researchers to monitor temporal changes in panicle physiology during the reproductive development. The method is useful for panicle-level measurements under diverse environmental stresses and is sensitive enough to evaluate genotypic variation for panicle physiology and architecture in cereals with compact inflorescences.

 
more » « less
NSF-PAR ID:
10382192
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Plant Methods
Volume:
18
Issue:
1
ISSN:
1746-4811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background and Aims

    The study reports on four different types of flag leaf rolling under soil drought in relation to the level of cell wall-bound phenolics. The flag leaf colonization by aphids, as a possible bioindicator of the accumulation of cell wall-bound phenolics, was also estimated.

    Methods

    The proteins of the photosynthetic apparatus that form its core and are crucial for maintaining its stability (D1/PsbA protein), limit destructive effects of light (PsbS, a protein binding carotenoids in the antennas) and participate in efficient electron transport between photosystems II (PSII) and PSI (Rieske iron–sulfur protein of the cytochrome b6f complex) were evaluated in two types of flag leaf rolling. Additionally, biochemical and physiological reactions to drought stress in rolling and non-rolling flag leaves were compared.

    Key Results

    The study identified four types of genome-related types of flag leaf rolling. The biochemical basis for these differences was a different number of phenolic molecules incorporated into polycarbohydrate structures of the cell wall. In an extreme case of non-rolling dehydrated flag leaves, they were found to accumulate high amounts of cell wall-bound phenolics that limited cell water loss and protected the photosynthetic apparatus against excessive light. PSII was also additionally protected against excess light by the accumulation of photosynthetic apparatus proteins that ensured stable and efficient transport of excitation energy beyond PSII and its dissipation as far-red fluorescence and heat. Our analysis revealed a new type of flag leaf rolling brought about by an interaction between wheat and rye genomes, and resulting in biochemical specialization of flexible, rolling and rigid, non-rolling parts of the flag leaf. The study confirmed limited aphid colonization of the flag leaves with enhanced content of cell wall-bound phenolics.

    Conclusions

    Non-rolling leaves developed effective adaptation mechanisms to reduce both water loss and photoinhibitory damage to the photosynthetic apparatus under drought stress.

     
    more » « less
  2. Abstract

    The rapid A‐Ciresponse (RACiR) technique alleviates limitations of measuring photosynthetic capacity by reducing the time needed to determine the maximum carboxylation rate (Vcmax) and electron transport rate (Jmax) in leaves. Photosynthetic capacity and its relationships with leaf development are important for understanding ecological and agricultural productivity; however, our current understanding is incomplete. Here, we show that RACiR can be used in previous generation gas exchange systems (i.e., the LI‐6400) and apply this method to rapidly investigate developmental gradients of photosynthetic capacity in poplar. We compared RACiR‐determined Vcmaxand Jmaxas well as respiration and stomatal conductance (gs) across four stages of leaf expansion inPopulus deltoidesand the poplar hybrid 717‐1B4 (Populus tremula × Populus alba). These physiological data were paired with leaf traits including nitrogen concentration, chlorophyll concentrations, and specific leaf area. Several traits displayed developmental trends that differed between the poplar species, demonstrating the utility of RACiR approaches to rapidly generate accurate measures of photosynthetic capacity. By using both new and old machines, we have shown how more investigators will be able to incorporate measurements of important photosynthetic traits in future studies and further our understanding of relationships between development and leaf‐level physiology.

     
    more » « less
  3. This study describes the evaluation of a range of approaches to semantic segmentation of hyperspectral images of sorghum plants, classifying each pixel as either nonplant or belonging to one of the three organ types (leaf, stalk, panicle). While many current methods for segmentation focus on separating plant pixels from background, organ-specific segmentation makes it feasible to measure a wider range of plant properties. Manually scored training data for a set of hyperspectral images collected from a sorghum association population was used to train and evaluate a set of supervised classification models. Many algorithms show acceptable accuracy for this classification task. Algorithms trained on sorghum data are able to accurately classify maize leaves and stalks, but fail to accurately classify maize reproductive organs which are not directly equivalent to sorghum panicles. Trait measurements extracted from semantic segmentation of sorghum organs can be used to identify both genes known to be controlling variation in a previously measured phenotypes (e.g., panicle size and plant height) as well as identify signals for genes controlling traits not previously quantified in this population (e.g., stalk/leaf ratio). Organ level semantic segmentation provides opportunities to identify genes controlling variation in a wide range of morphological phenotypes in sorghum, maize, and other related grain crops. 
    more » « less
  4. Abstract

    MicroRNAs (miRNAs) are small noncoding RNAs which regulate various functions related to growth, development, and stress responses in plants and animals. Rice,Oryza sativa, is one of the most important food crops of the world. In rice, a number of quantitative trait loci (QTL) controlling yield‐related traits have been identified. Some of them are actually controlled by miRNAs, which control various yield‐related quantitative traits in rice. On one hand, many of these miRNAs are found to regulate more than one yield‐related traits, such as tillering, grain size, and branch number of a panicle. On the other hand, a rice yield‐related trait is usually controlled by multiple miRNAs, for example, grain size being controlled by miR156, miR167, miR396, miR397, and miR1432. In rare case, a single miRNA may specifically regulate only one yield‐related trait, such as, miR444 regulating rice tillering. In this review, we focus on the functions of miRNAs in controlling yield‐related quantitative traits in rice, including panicle grain number, grain weight/size, panicle length and branching, tiller number per plant, spikelet number, seed setting rate, and leaf inclination, and discuss how to modulate the expression of these miRNAs using modern molecular biology tools to promote grain yield.

    This article is categorized under:

    RNA in Disease and Development > RNA in Development

     
    more » « less
  5. Abstract

    The total solar eclipse of August 21, 2017 created a path of totality ~115 km in width across the United States. While eclipse observations have shown distinct responses in animal behavior often emulating nocturnal behavior, the influence of eclipses on plant physiology are less understood. We investigated physiological perturbations due to rapid changes of sunlight and air temperature in big sagebrush (Artemisia tridentatassp.vaseyana), a desert shrub common within the path of eclipse totality. Leaf gas exchange, water potential, and chlorophyllafluorescence were monitored during the eclipse and compared to responses obtained the day before in absence of the eclipse. On the day of the eclipse, air temperature decreased by 6.4 °C, coupled with a 1.0 kPa drop in vapor pressure deficit having a 9-minute lag following totality. Using chlorophyllafluorescence measurements, we found photosynthetic efficiency of photosystem II (Fv’/Fm’) recovered to near dark acclimated state (i.e., 87%), but the short duration of darkness did not allow for complete recovery. Gas exchange data and a simple light response model were used to estimate a 14% reduction in carbon assimilation for one day over sagebrush dominated areas within the path of totality for the Western United States.

     
    more » « less