Some proteins, including yeast translation termination factor Sup35 (eRF3) are capable of both stress-induced liquid-liquid phase separation (LLPS) and formation of solid fibrous aggregates (amyloids). Fragmentation and propagation of amyloid fibrils generates transmissible (in yeast, heritable) self-perpetuating protein agents, termed prions. Relationships between these processes are still poorly understood. Previous literature data suggested that the ability of Sup35 orthologs to form a prion is sporadically distributed in fungal evolution, and depends on amino acid composition of Sup35 prion domain (PrD), rather than on a evolutionarily variable specific sequence. We have studied two groups of proteins: 1) fungal Sup35 PrDs of various evolutionary origins, and 2) artificially synthesized “scrambled” variants of Saccharomyces cerevisiae Sup35 PrD, that possess identical amino acid composition but different sequences. These proteins were fused to fluorophores and expressed in S. cerevisiae cells. LLPS and amyloid/prion formation were assessed by fluorescence microscopy and biochemical approaches. Amino acid sequences were analyzed by various computational algorithms. Our data indicates that propagation of prion state strongly depends on the evolutionary distance from the host. In contrast, majority of proteins studied are capable of both LLPS and ability to form amyloid fibrils. These capabilities are associated with specific patterns of PrD amino acid distribution, that are broadly conserved among fungi. Notably, PrDs of different sequences differ from each other by their ability to convert from liquid condensates to amyloids, and relationship between these processes is apparently optimized in evolution. Moreover, heterotypic PrDs are can colocalize with each other within liquid condensates and influence amyloid conversion by each other. To conclude, LLPS and amyloid properties depend on specific evolutionarily conserved sequence patterns, indicating possible important biological roles for these processes. These patterns could potentially be used to predict LLPS and prion potential in other sequence contexts. This work was supported by NSF grant 2345660.
more »
« less
Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins
Abstract Intrinsically disordered proteins rich in cationic amino acid groups can undergo Liquid-Liquid Phase Separation (LLPS) in the presence of charge-balancing anionic counterparts. Arginine and Lysine are the two most prevalent cationic amino acids in proteins that undergo LLPS, with arginine-rich proteins observed to undergo LLPS more readily than lysine-rich proteins, a feature commonly attributed to arginine’s ability to form stronger cation-π interactions with aromatic groups. Here, we show that arginine’s ability to promote LLPS is independent of the presence of aromatic partners, and that arginine-rich peptides, but not lysine-rich peptides, display re-entrant phase behavior at high salt concentrations. We further demonstrate that the hydrophobicity of arginine is the determining factor giving rise to the reentrant phase behavior and tunable viscoelastic properties of the dense LLPS phase. Controlling arginine-induced reentrant LLPS behavior using temperature and salt concentration opens avenues for the bioengineering of stress-triggered biological phenomena and drug delivery systems.
more »
« less
- Award ID(s):
- 1716956
- PAR ID:
- 10382268
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The review begins with a concise description of the principles of phase separation. This is followed by a comprehensive section on phase separation of chromatin, in which we recount the 60 years history of chromatin aggregation studies, discuss the evidence that chromatin aggregation intrinsically is a physiologically relevant liquid–solid phase separation (LSPS) process driven by chromatin self-interaction, and highlight the recent findings that under specific solution conditions chromatin can undergo liquid–liquid phase separation (LLPS) rather than LSPS. In the next section of the review, we discuss how certain chromatin-associated proteins undergo LLPS in vitro and in vivo. Some chromatin-binding proteins undergo LLPS in purified form in near-physiological ionic strength buffers while others will do so only in the presence of DNA, nucleosomes, or chromatin. The final section of the review evaluates the solid and liquid states of chromatin in the nucleus. While chromatin behaves as an immobile solid on the mesoscale, nucleosomes are mobile on the nanoscale. We discuss how this dual nature of chromatin, which fits well the concept of viscoelasticity, contributes to genome structure, emphasizing the dominant role of chromatin self-interaction.more » « less
-
Abstract Synaptotagmin (syt) 1, a Ca2+sensor for synaptic vesicle exocytosis, functions in vivo as a multimer. Syt1 senses Ca2+via tandem C2-domains that are connected to a single transmembrane domain via a juxtamembrane linker. Here, we show that this linker segment harbors a lysine-rich, intrinsically disordered region that is necessary and sufficient to mediate liquid-liquid phase separation (LLPS). Interestingly, condensate formation negatively regulates the Ca2+-sensitivity of syt1. Moreover, Ca2+and anionic phospholipids facilitate the observed phase separation, and increases in [Ca2+]ipromote the fusion of syt1 droplets in living cells. Together, these observations suggest a condensate-mediated feedback loop that serves to fine-tune the ability of syt1 to trigger release, via alterations in Ca2+binding activity and potentially through the impact of LLPS on membrane curvature during fusion reactions. In summary, the juxtamembrane linker of syt1 emerges as a regulator of syt1 function by driving self-association via LLPS.more » « less
-
Introduction: Some proteins, including yeast prion protein Sup35 (eRF3) are capable of both stress-induced liquid-liquid phase separation (LLPS) and formation of prion state, propagated via solid fibrous aggregates (amyloids). Relationships between these processes are still poorly understood. Previous literature data suggested that prion formation by Sup35 is sporadically distributed in fungal evolution and depends on amino acid composition of its prion domain (PrD), rather than on a specific sequence which is highly variable. Objectives: Identify sequence patterns that control LLPS and amyloid formation by Sup35 PrD, and trace their conservation in fungal evolution. Methods: Fungal Sup35 PrDs of various evolutionary origins, as well as artificially synthesized “scrambled” variants of Saccharomyces cerevisiae Sup35 PrD, having identical amino acid composition but different sequences, were fused to fluorophores and expressed in S. cerevisiae cells. LLPS and amyloid/prion formation were assessed by fluorescence microscopy and biochemical approaches. Amino acid sequences were analyzed by various computational algorithms. Results/Discussion: While propagation of prion state depends on evolutionary distance from the host, both LLPS and ability to form an amyloid are associated with specific patterns of PrD amino acid distribution, that are broadly conserved among fungi. PrDs of different origins are capable of colocalizing within liquid condensates and influencing amyloid conversion by each other. Conclusion: LLPS and amyloid properties depend on specific evolutionarily conserved sequence patterns, indicating possible important biological roles for these processes. These patterns could potentially be used to predict LLPS and prion potential in other sequence contexts. Funding: NSF grant 2345660more » « less
-
Proteins can form droplets via liquid–liquid phase separation (LLPS) in cells. Recent experiments demonstrate that LLPS is qualitatively different on two-dimensional (2D) surfaces compared to three-dimensional (3D) solutions. In this paper, we use mathematical modeling to investigate the causes of the discrepancies between LLPS in 2D and 3D. We model the number of proteins and droplets inducing LLPS by continuous-time Markov chains and use chemical reaction network theory to analyze the model. To reflect the influence of space dimension, droplet formation and dissociation rates are determined using the first hitting times of diffusing proteins. We first show that our stochastic model reproduces the appropriate phase diagram and is consistent with the relevant thermodynamic constraints. After further analyzing the model, we find that it predicts that the space dimension induces qualitatively different features of LLPS, which are consistent with recent experiments. While it has been claimed that the differences between 2D and 3D LLPS stem mainly from different diffusion coefficients, our analysis is independent of the diffusion coefficients of the proteins since we use the stationary model behavior. Our results thus give new hypotheses about how space dimension affects LLPS.more » « less
An official website of the United States government
