skip to main content


Title: Azumaya Algebras and Canonical Components
Abstract Let $M$ be a compact 3-manifold and $\Gamma =\pi _1(M)$. Work by Thurston and Culler–Shalen established the ${\operatorname{\textrm{SL}}}_2({\mathbb{C}})$ character variety $X(\Gamma )$ as fundamental tool in the study of the geometry and topology of $M$. This is particularly the case when $M$ is the exterior of a hyperbolic knot $K$ in $S^3$. The main goals of this paper are to bring to bear tools from algebraic and arithmetic geometry to understand algebraic and number theoretic properties of the so-called canonical component of $X(\Gamma )$, as well as distinguished points on the canonical component, when $\Gamma $ is a knot group. In particular, we study how the theory of quaternion Azumaya algebras can be used to obtain algebraic and arithmetic information about Dehn surgeries, and perhaps of most interest, to construct new knot invariants that lie in the Brauer groups of curves over number fields.  more » « less
Award ID(s):
1906088
NSF-PAR ID:
10382294
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2022
Issue:
7
ISSN:
1073-7928
Page Range / eLocation ID:
4969 to 5036
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let M be a compact 3-manifold and 􏲣 = π1(M). The work by Thurston and Culler– Shalen established the SL2(C) character variety X(􏲣) as fundamental tool in the study of the geometry and topology of M. This is particularly the case when M is the exterior of a hyperbolic knot K in S3. The main goals of this paper are to bring to bear tools from algebraic and arithmetic geometry to understand algebraic and number theoretic properties of the so-called canonical component of X(􏲣), as well as distinguished points on the canonical component, when 􏲣 is a knot group. In particular, we study how the theory of quaternion Azumaya algebras can be used to obtain algebraic and arithmetic information about Dehn surgeries, and perhaps of most interest, to construct new knot invariants that lie in the Brauer groups of curves over number fields. 
    more » « less
  2. Abstract

    We investigate the asymptotics of the total number of simple $(4a+1)$-knots with Alexander polynomial of the form $mt^2 +(1-2m) t + m$ for some nonzero $m \in [-X, X]$. Using Kearton and Levine’s classification of simple knots, we give equivalent algebraic and arithmetic formulations of this counting question. In particular, this count is the same as the total number of ${\mathbb{Z}}[1/m]$-equivalence classes of binary quadratic forms of discriminant $1-4m$, for $m$ running through the same range. Our heuristics, based on the Cohen–Lenstra heuristics, suggest that this total is asymptotic to $X^{3/2}/\log X$ and the largest contribution comes from the values of $m$ that are positive primes. Using sieve methods, we prove that the contribution to the total coming from $m$ positive prime is bounded above by $O(X^{3/2}/\log X)$ and that the total itself is $o(X^{3/2})$.

     
    more » « less
  3. Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ⁢ ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K . For each point a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ⁢ ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X ; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ⁢ ( a t ) - h D ⁢ ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ⁢ ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D . We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ⁢ ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ⁢ ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K . These results were known for polynomial maps f and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis,[21, 14],and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29].Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K ; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k , where the local canonical height λ ^ f , γ ⁢ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number. 
    more » « less
  4. The constraint satisfaction problems k-SAT and Quantum k-SAT (k-QSAT) are canonical NP-complete and QMA_1-complete problems (for k >= 3), respectively, where QMA_1 is a quantum generalization of NP with one-sided error. Whereas k-SAT has been well-studied for special tractable cases, as well as from a parameterized complexity perspective, much less is known in similar settings for k-QSAT. Here, we study the open problem of computing satisfying assignments to k-QSAT instances which have a "matching" or "dimer covering"; this is an NP problem whose decision variant is trivial, but whose search complexity remains open. Our results fall into three directions, all of which relate to the "matching" setting: (1) We give a polynomial-time classical algorithm for k-QSAT when all qubits occur in at most two clauses. (2) We give a parameterized algorithm for k-QSAT instances from a certain non-trivial class, which allows us to obtain exponential speedups over brute force methods in some cases by reducing the problem to solving for a single root of a single univariate polynomial. (3) We conduct a structural graph theoretic study of 3-QSAT interaction graphs which have a "matching". We remark that the results of (2), in particular, introduce a number of new tools to the study of Quantum SAT, including graph theoretic concepts such as transfer filtrations and blow-ups from algebraic geometry; we hope these prove useful elsewhere. 
    more » « less
  5. Let T be a set of n planar semi-algebraic regions in R^3 of constant complexity (e.g., triangles, disks), which we call _plates_. We wish to preprocess T into a data structure so that for a query object gamma, which is also a plate, we can quickly answer various intersection queries, such as detecting whether gamma intersects any plate of T, reporting all the plates intersected by gamma, or counting them. We also consider two simpler cases of this general setting: (i) the input objects are plates and the query objects are constant-degree algebraic arcs in R^3 (arcs, for short), or (ii) the input objects are arcs and the query objects are plates in R^3. Besides being interesting in their own right, the data structures for these two special cases form the building blocks for handling the general case. By combining the polynomial-partitioning technique with additional tools from real algebraic geometry, we obtain a variety of results with different storage and query-time bounds, depending on the complexity of the input and query objects. For example, if T is a set of plates and the query objects are arcs, we obtain a data structure that uses O^*(n^(4/3)) storage (where the O^*(...) notation hides subpolynomial factors) and answers an intersection query in O^*(n^(2/3)) time. Alternatively, by increasing the storage to O^*(n^(3/2)), the query time can be decreased to O^*(n^(rho)), where rho = (2t-3)/(3(t-1)) < 2/3 and t≤3 is the number of parameters needed to represent the query arcs. 
    more » « less