The approximate path synthesis of four-bar linkages with symmetric coupler curves is presented. This includes the formulation of a polynomial optimization problem, a characterization of the maximum number of critical points, a complete numerical solution by homotopy continuation, and application to the design of straight line generators. Our approach specifies a desired curve and finds several optimal four-bar linkages with a coupler trace that approximates it. The objective posed simultaneously enforces kinematic accuracy, loop closure, and leads to polynomial first order necessary conditions with a structure that remains the same for any desired trace leading to a generalized result. Ground pivot locations are set as chosen parameters, and it is shown that the objective has a maximum of 73 critical points. The theoretical work is applied to the design of straight line paths. Parameter homotopy runs are executed for 1440 different choices of ground pivots for a thorough exploration. These computations found the expected linkages, namely, Watt, Evans, Roberts, Chebyshev, and other previously unreported linkages which are organized into a 2D atlas using the UMAP algorithm.
more »
« less
Exploration of Venus’ Upper Atmosphere Using an Aqua and Bacteria Inspired Aerial System
This paper aims to design a jellyfish-inspired robot for the exploration of Venus’ atmosphere. Venus’ hostile environment necessitates different methods for planetary analysis than that of Mars or Earth. In this research, an established jellyfish-inspired drone design is modified to take advantage of Venus’ dense atmosphere for the purpose of upper atmospheric exploration. The original design uses modified Stephenson-I 6-Bar linkages to actuate a soft skin to produce thrust in a fluid, similar to the movement of a jellyfish’s bell; this research compares the original actuator design to 3 new designs based on the 6-Bar and 4-Bar linkages. In addition, a Crank mechanism to change the profile of the balloon is proposed, and the resulting effect on the drag force is compared between the original spherical profile and the modified oblong profile. These mechanisms will allow the robot to maximize its operational time in Venus’s atmosphere. In combination with the design of the jellyfish-inspired robot is the proposal of flagellate-inspired robots that rely on Venus's strong winds to power its host of sensors.
more »
« less
- Award ID(s):
- 1757793
- PAR ID:
- 10382427
- Date Published:
- Journal Name:
- AIAA SCITECH 2022 Forum
- Page Range / eLocation ID:
- 2581
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper presents a new two-step design procedure and preliminary kinematic evaluation of a novel, passive, six-bar knee-ankle-foot orthosis (KAFO). The kinematic design and preliminary kinematic gait analysis of the KAFO are based on motion capture data from a single healthy male subject. Preliminary kinematic evaluation shows that the designed passive KAFO is capable of supporting flexion and extension of the knee joint during stance and swing phases of walking. The two-step design procedure for the KAFO consists of (1) computational synthesis based on user's motion data and (2) performance optimization. In the computational synthesis step, first the lower leg (knee-ankle-foot) of the subject is approximated as a 2R kinematic chain and its target trajectories are specified from motion capture data. Six-bar linkages are synthesized to coordinate the angular movements of knee and ankle joints of the 2R chain at 11 accuracy points. The first step of the design procedure yields 332 six-bar KAFO design candidates. This is followed by a performance optimization step in which the KAFO design candidates are optimally modified to satisfy specified constraints on end-effector trajectory and shape. This two-step process yields an optimally designed passive six-bar KAFO that shows promising kinematic results at the knee joint of the user during walking. The preliminary prototype manufactured is cost effective, easy to operate, and suitably demonstrates the feasibility of the proposed concept.more » « less
-
Abstract Recent studies have shown that reconfigurable acoustic arrays inspired from rigid origami structures can be used to radiate and focus acoustic waves. Yet, there is a need for exploration of single-degree-of-freedom deployment to be integrated with such arrays for sake of tailoring wave focusing. This research explores a reconfigurable acoustic array inspired from a regular Miura-ori unit cell and threefold-symmetric Bricard linkage. The system focuses on acoustic waves and has single-degree-of-freedom motion when incorporated with a modified threefold-symmetric Bricard linkage. Three configurations of the array are analyzed where array facets that converge towards the center axis are considered to vibrate like baffled pistons and generate acoustic waves into the surrounding fluid. An analytical model is constructed to explore the near-field acoustic focusing behavior of the proposed acoustic array. The wave focusing capabilities of the array are verified through proof-of-principle experiments. The results show that the wave focusing of the array is influenced by the geometric parameters of the facets and the relative distance of facets to the center axis, in agreement with simplified ray acoustics estimates. These findings underscore the fundamental relationship between focusing sound radiators and geometric acoustics principles. The results encourage broader exploration of acoustic array designs inspired from integrated single-degree-of-freedom linkages and origami structures for sake of straightforward array deployment and reconfiguration.more » « less
-
null (Ed.)Abstract Cognate linkages are mechanisms that share the same motion, a property that can be useful in mechanical design. This article treats planar curve cognates, that is, planar mechanisms with rotational joints whose coupler points draw the same curve, as well as coupler cognates and timed curve cognates. The purpose of this article is to develop a straightforward method based solely on kinematic equations to construct cognates. The approach computes cognates that arise from permuting link rotations and is shown to reproduce all of the known results for cognates of four-bar and six-bar linkages. This approach is then used to construct a cognate of an eight-bar and a ten-bar linkage.more » « less
-
Abstract This paper presents the design and validation of a wearable shoulder exoskeleton robot intended to serve as a platform for assistive controllers that can mitigate the risk of musculoskeletal disorders seen in workers. The design features a four-bar mechanism that moves the exoskeleton’s center of mass from the upper shoulders to the user’s torso, dual-purpose gravity compensation mechanism located inside the four-bar’s linkages that supports the full gravitational loading from the exoskeleton with partial user’s arm weight compensation, and a novel 6 degree-of-freedom (DoF) compliant misalignment compensation mechanism located between the end effector and the user’s arm to allow shoulder translation while maintaining control of the arm’s direction. Simulations show the four-bar design lowers the center of mass by$$ 11 $$ cm and the kinematic chain can follow the motion of common upper arm trajectories. Experimental tests show the gravity compensation mechanism compensates gravitational loading within$$ \pm 0.5 $$ Nm over the range of shoulder motion and the misalignment compensation mechanism has the desired 6 DoF stiffness characteristics and range of motion to adjust for shoulder center translation. Finally, a workspace admittance controller was implemented and evaluated showing the system is capable of accurately reproducing simulated impedance behavior with transparent low-impedance human operation.more » « less
An official website of the United States government

