skip to main content


Title: Kinematic Design and Evaluation of a Six-Bar Knee-Ankle-Foot Orthosis
Abstract This paper presents a new two-step design procedure and preliminary kinematic evaluation of a novel, passive, six-bar knee-ankle-foot orthosis (KAFO). The kinematic design and preliminary kinematic gait analysis of the KAFO are based on motion capture data from a single healthy male subject. Preliminary kinematic evaluation shows that the designed passive KAFO is capable of supporting flexion and extension of the knee joint during stance and swing phases of walking. The two-step design procedure for the KAFO consists of (1) computational synthesis based on user's motion data and (2) performance optimization. In the computational synthesis step, first the lower leg (knee-ankle-foot) of the subject is approximated as a 2R kinematic chain and its target trajectories are specified from motion capture data. Six-bar linkages are synthesized to coordinate the angular movements of knee and ankle joints of the 2R chain at 11 accuracy points. The first step of the design procedure yields 332 six-bar KAFO design candidates. This is followed by a performance optimization step in which the KAFO design candidates are optimally modified to satisfy specified constraints on end-effector trajectory and shape. This two-step process yields an optimally designed passive six-bar KAFO that shows promising kinematic results at the knee joint of the user during walking. The preliminary prototype manufactured is cost effective, easy to operate, and suitably demonstrates the feasibility of the proposed concept.  more » « less
Award ID(s):
1636017
NSF-PAR ID:
10194734
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Engineering and Science in Medical Diagnostics and Therapy
Volume:
3
Issue:
2
ISSN:
2572-7958
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    For the controller of wearable lower-limb assistive devices, quantitative understanding of human locomotion serves as the basis for human motion intent recognition and joint-level motion control. Traditionally, the required gait data are obtained in gait research laboratories, utilizing marker-based optical motion capture systems. Despite the high accuracy of measurement, marker-based systems are largely limited to laboratory environments, making it nearly impossible to collect the desired gait data in real-world daily-living scenarios. To address this problem, the authors propose a novel exoskeleton-based gait data collection system, which provides the capability of conducting independent measurement of lower limb movement without the need for stationary instrumentation. The basis of the system is a lightweight exoskeleton with articulated knee and ankle joints. To minimize the interference to a wearer’s natural lower-limb movement, a unique two-degrees-of-freedom joint design is incorporated, integrating a primary degree of freedom for joint motion measurement with a passive degree of freedom to allow natural joint movement and improve the comfort of use. In addition to the joint-embedded goniometers, the exoskeleton also features multiple positions for the mounting of inertia measurement units (IMUs) as well as foot-plate-embedded force sensing resistors to measure the foot plantar pressure. All sensor signals are routed to a microcontroller for data logging and storage. To validate the exoskeleton-provided joint angle measurement, a comparison study on three healthy participants was conducted, which involves locomotion experiments in various modes, including overground walking, treadmill walking, and sit-to-stand and stand-to-sit transitions. Joint angle trajectories measured with an eight-camera motion capture system served as the benchmark for comparison. Experimental results indicate that the exoskeleton-measured joint angle trajectories closely match those obtained through the optical motion capture system in all modes of locomotion (correlation coefficients of 0.97 and 0.96 for knee and ankle measurements, respectively), clearly demonstrating the accuracy and reliability of the proposed gait measurement system. 
    more » « less
  2. Abstract This paper explores the kinematic synthesis, design, and pilot experimental testing of a six-legged walking robotic platform able to traverse through different terrains. We aim to develop a structured approach to designing the limb morphology using a relaxed kinematic task with incorporated conditions on foot-environments interaction, specifically contact force direction and curvature constraints, related to maintaining contact. The design approach builds up incrementally starting with studying the basic human leg walking trajectory and then defining a “relaxed” kinematic task. The “relaxed” kinematic task consists only of two contact locations (toe-off and heel-strike) with higher-order motion task specifications compatible with foot-terrain(s) contact and curvature constraints in the vicinity of the two contacts. As the next step, an eight-bar leg image is created based on the “relaxed” kinematic task and incorporated within a six-legged walking robot. Pilot experimental tests explore if the proposed approach results in an adaptable behavior which allows the platform to incorporate different walking foot trajectories and gait styles coupled to each environment. The results suggest that the proposed “relaxed” higher-order motion task combined with the leg morphological properties and feet material allowed the platform to walk stably on the different terrains. Here we would like to note that one of the main advantages of the proposed method in comparison with other existing walking platforms is that the proposed robotic platform has carefully designed limb morphology with incorporated conditions on foot-environment interaction. Additionally, while most of the existing multilegged platforms incorporate one actuator per leg, or per joint, our goal is to explore the possibility of using a single actuator to drive all six legs of the platform. This is a critical step which opens the door for the development of future transformative technology that is largely independent of human control and able to learn about the environment through their own sensory systems. 
    more » « less
  3. Abstract This article describes the development and evaluation of our passively actuated closed-loop articulated wearable (CLAW) that uses a common slider to passively drive its exo-fingers for use in physical training of people with limited hand mobility. Our design approach utilizes physiological tasks for dimensional synthesis and yields a variety of design candidates that fulfill the desired fingertip precision grasping trajectory. Once it is ensured that the synthesized fingertip motion is close to the physiological fingertip grasping trajectories, performance assessment criteria related to user–device interference and natural joint angle movement are taken into account. After the most preferred design for each finger is chosen, minor modifications are made related to substituting the backbone chain with the wearer’s limb to provide the skeletal structure for the customized passive device. Subsequently, we evaluate it for natural joint motion based on a novel design candidate assessment method. A hand prototype is printed, and its preliminary performance regarding natural joint motion, wearability, and scalability are assessed. The pilot experimental test on a range of healthy subjects with different hand/finger sizes shows that the CLAW hand is easy to operate and guides the user’s fingers without causing any discomfort. It also ensures both precision and power grasping in a natural manner. This study establishes the importance of incorporating novel design candidate assessment techniques, based on human finger kinematic models, on a conceptual design level that can assist in finding design candidates for natural joint motion coordination. 
    more » « less
  4. Passive prostheses cannot provide the net positive work required at the knee and ankle for step-over stair ascent. Powered prostheses can provide this net positive work, but user synchronization of joint motion and power input are critical to enabling natural stair ascent gaits. In this work, we build on previous phase variable-based control methods for walking and propose a stair ascent controller driven by the motion of the user's residual thigh. We use reference kinematics from an able-bodied dataset to produce knee and ankle joint trajectories parameterized by gait phase. We redefine the gait cycle to begin at the point of maximum hip flexion instead of heel strike to improve the phase estimate. Able-bodied bypass adapter experiments demonstrate that the phase variable controller replicates normative able-bodied kinematic trajectories with a root mean squared error of 12.66 deg and 2.64 deg for the knee and ankle, respectively. The knee and ankle joints provided on average 0.387J/kg and 0.212J/kg per stride, compared to the normative averages of 0.335J/kg and 0.207J/kg, respectively. Thus, this controller allows powered knee-ankle prostheses to perform net positive mechanical work to assist stair ascent. 
    more » « less
  5. This paper presents the design and preliminary testing of an instrumented exoskeleton system, which is targeted at collecting gait data of the human locomotion to support the controller development of lower-limb wearable robots. This compact and lightweight device features a unique two-degree-of-freedom joint to minimize the interference to the user movement and a simple yet effective adjustment mechanism to fit subjects at different heights. For the gait measurement, the device incorporates embedded joint goniometers to obtain the knee and ankle positions, and inertial measurement units to obtain three-dimensional kinematic information. Force-sensing resistors are also incorporated into the shoe insole for plantar pressure measurement. Sensor signals are routed to an onboard microcontroller system for data storage and transfer, and the system is fully self-contained with onboard battery to facilitate data collection in various environments. A prototype of the exoskeleton was fabricated, and preliminary testing was conducted on two healthy subjects in various postures and modes of movement (walking, sitting, standing, stair climbing, etc.). The evaluation of a temporal event detection test showed no more than 5.5% mean variation in the measure of step counts by the sensory system and video annotation. These results indicate that the exoskeleton can provide an accurate measurement of gait information, using measurements taken from external video recordings as the benchmark in this preliminary validation study. 
    more » « less