skip to main content

Title: Kinematic Design and Evaluation of a Six-Bar Knee-Ankle-Foot Orthosis
Abstract This paper presents a new two-step design procedure and preliminary kinematic evaluation of a novel, passive, six-bar knee-ankle-foot orthosis (KAFO). The kinematic design and preliminary kinematic gait analysis of the KAFO are based on motion capture data from a single healthy male subject. Preliminary kinematic evaluation shows that the designed passive KAFO is capable of supporting flexion and extension of the knee joint during stance and swing phases of walking. The two-step design procedure for the KAFO consists of (1) computational synthesis based on user's motion data and (2) performance optimization. In the computational synthesis step, first the lower leg (knee-ankle-foot) of the subject is approximated as a 2R kinematic chain and its target trajectories are specified from motion capture data. Six-bar linkages are synthesized to coordinate the angular movements of knee and ankle joints of the 2R chain at 11 accuracy points. The first step of the design procedure yields 332 six-bar KAFO design candidates. This is followed by a performance optimization step in which the KAFO design candidates are optimally modified to satisfy specified constraints on end-effector trajectory and shape. This two-step process yields an optimally designed passive six-bar KAFO that shows promising kinematic results at the more » knee joint of the user during walking. The preliminary prototype manufactured is cost effective, easy to operate, and suitably demonstrates the feasibility of the proposed concept. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Engineering and Science in Medical Diagnostics and Therapy
Sponsoring Org:
National Science Foundation
More Like this
  1. For the controller of wearable lower-limb assistive devices, quantitative understanding of human locomotion serves as the basis for human motion intent recognition and joint-level motion control. Traditionally, the required gait data are obtained in gait research laboratories, utilizing marker-based optical motion capture systems. Despite the high accuracy of measurement, marker-based systems are largely limited to laboratory environments, making it nearly impossible to collect the desired gait data in real-world daily-living scenarios. To address this problem, the authors propose a novel exoskeleton-based gait data collection system, which provides the capability of conducting independent measurement of lower limb movement without the need for stationary instrumentation. The basis of the system is a lightweight exoskeleton with articulated knee and ankle joints. To minimize the interference to a wearer’s natural lower-limb movement, a unique two-degrees-of-freedom joint design is incorporated, integrating a primary degree of freedom for joint motion measurement with a passive degree of freedom to allow natural joint movement and improve the comfort of use. In addition to the joint-embedded goniometers, the exoskeleton also features multiple positions for the mounting of inertia measurement units (IMUs) as well as foot-plate-embedded force sensing resistors to measure the foot plantar pressure. All sensor signals are routedmore »to a microcontroller for data logging and storage. To validate the exoskeleton-provided joint angle measurement, a comparison study on three healthy participants was conducted, which involves locomotion experiments in various modes, including overground walking, treadmill walking, and sit-to-stand and stand-to-sit transitions. Joint angle trajectories measured with an eight-camera motion capture system served as the benchmark for comparison. Experimental results indicate that the exoskeleton-measured joint angle trajectories closely match those obtained through the optical motion capture system in all modes of locomotion (correlation coefficients of 0.97 and 0.96 for knee and ankle measurements, respectively), clearly demonstrating the accuracy and reliability of the proposed gait measurement system.« less
  2. Passive prostheses cannot provide the net positive work required at the knee and ankle for step-over stair ascent. Powered prostheses can provide this net positive work, but user synchronization of joint motion and power input are critical to enabling natural stair ascent gaits. In this work, we build on previous phase variable-based control methods for walking and propose a stair ascent controller driven by the motion of the user's residual thigh. We use reference kinematics from an able-bodied dataset to produce knee and ankle joint trajectories parameterized by gait phase. We redefine the gait cycle to begin at the point of maximum hip flexion instead of heel strike to improve the phase estimate. Able-bodied bypass adapter experiments demonstrate that the phase variable controller replicates normative able-bodied kinematic trajectories with a root mean squared error of 12.66 deg and 2.64 deg for the knee and ankle, respectively. The knee and ankle joints provided on average 0.387J/kg and 0.212J/kg per stride, compared to the normative averages of 0.335J/kg and 0.207J/kg, respectively. Thus, this controller allows powered knee-ankle prostheses to perform net positive mechanical work to assist stair ascent.
  3. This paper presents the design and preliminary testing of an instrumented exoskeleton system, which is targeted at collecting gait data of the human locomotion to support the controller development of lower-limb wearable robots. This compact and lightweight device features a unique two-degree-of-freedom joint to minimize the interference to the user movement and a simple yet effective adjustment mechanism to fit subjects at different heights. For the gait measurement, the device incorporates embedded joint goniometers to obtain the knee and ankle positions, and inertial measurement units to obtain three-dimensional kinematic information. Force-sensing resistors are also incorporated into the shoe insole for plantar pressure measurement. Sensor signals are routed to an onboard microcontroller system for data storage and transfer, and the system is fully self-contained with onboard battery to facilitate data collection in various environments. A prototype of the exoskeleton was fabricated, and preliminary testing was conducted on two healthy subjects in various postures and modes of movement (walking, sitting, standing, stair climbing, etc.). The evaluation of a temporal event detection test showed no more than 5.5% mean variation in the measure of step counts by the sensory system and video annotation. These results indicate that the exoskeleton can provide an accuratemore »measurement of gait information, using measurements taken from external video recordings as the benchmark in this preliminary validation study.« less
  4. The paper presents the design of a lower leg orthotic device based on dimensional synthesis of multi-loop six-bar linkages. The wearable device is comprised of a 2R serial chain, termed the backbone, sized according to the wearer’s limb anthropometric dimensions. The paper is a result of our current efforts in proposing a systematic process for the development of 3D printed customized assistive devices for patients with reduced limb mobility, based on anthropometric data and physiological task. To design the wearable device, the physiological task of the limb is obtained using an optical motion capture system and its dimensions are set such that it matched the lower leg kinematics as closely as possible. As a next step a six-bar linkage is synthesized and ensured that its motion is as close as possible to the physiological task. Next, the 2R backbone is replaced by the wearer’s limb to provide the skeletal structure for the multiloop wearable device. During the final stage of the process the 2R backbone is relocated to parallel the human’s limb on one side, providing support and stability. The designed device can be secured to the thigh of the user to guide the lower leg without causing any discomfortmore »and to ensure a natural physiological gait trajectory. This results in orthotic device for assisting people with lower leg injuries with compact size and better wearability.« less
  5. Abstract This paper presents the design, dynamic modeling, and integration of a single degree of freedom (DOF) robotic leg mechanism intended for tailed quadruped locomotion. The design employs a lightweight six-bar linkage that couples the hip and knee flexion/extension joints mechanically, requiring only a single degree of actuation. By utilizing a parametric optimization, a unique topological arrangement is achieved that results in a foot trajectory that is well suited for dynamic gaits including trot-running, bounding, and galloping. Furthermore, a singular perturbation is introduced to the hybrid dynamic framework to address the lack of robust methods that provide a solution for the differential algebraic equations (DAEs) that characterize closed kinematic chain (CKC) structures as well as the hybrid nature of legged locomotion. By approximating the system dynamics as ordinary differential equations (ODEs) and asymptotically driving the constraint error to zero, CKCs can adopt existing real-time model-based/model-predictive/hybrid-control frameworks. The dynamic model is verified through simulations and the foot trajectory was experimentally validated. Preliminary open-loop planar running demonstrated speeds up to 3.2 m/s. These advantages, accompanied by low-integration costs, warrant this leg as a robust, effective platform for future tailed quadruped research.