- Award ID(s):
- 1542756
- PAR ID:
- 10382433
- Date Published:
- Journal Name:
- The Cryosphere
- Volume:
- 14
- Issue:
- 7
- ISSN:
- 1994-0424
- Page Range / eLocation ID:
- 2515 to 2535
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The dynamics of marine-terminating outlet glaciers are of fundamental interest in glaciology, and affect mass loss from ice sheets in a warming climate. In this study, we analyze the response of outlet glaciers to different sources of climate forcing. We find that outlet glaciers have a characteristically different transient response to surface-mass-balance forcing applied over the interior than to oceanic forcing applied at the grounding line. A recently developed reduced model represents outlet glacier dynamics via two widely-separated response timescales: a fast response associated with grounding-zone dynamics, and a slow response of interior ice. The reduced model is shown to emulate the behavior of a more complex numerical model of ice flow. Together, these models demonstrate that ocean forcing first engages the fast, local response, and then the slow adjustment of interior ice, whereas surface-mass-balance forcing is dominated by the slow interior adjustment. We also demonstrate the importance of the timescales of stochastic forcing for assessing the natural variability of outlet glaciers, highlighting that decadal persistence in ocean variability can affect the behavior of outlet glaciers on centennial and longer timescales. Finally, we show that these transient responses have important implications for: attributing observed glacier changes to natural or anthropogenic influences; the future change already committed by past forcing; and the impact of past climate changes on the preindustrial glacier state, against which current and future anthropogenic influences are assessed.more » « less
-
Recent observations indicate that many marine‐terminating glaciers in Greenland and Antarctica are currently retreating and thinning, potentially due to long‐term trends in climate forcing. In this study, we describe a simple two‐stage model that accurately emulates the response to external forcing of marine‐terminating glaciers simulated in a spatially extended model. The simplicity of the model permits derivation of analytical expressions describing the marine‐terminating glacier response to forcing. We find that there are two time scales that characterize the stable glacier response to external forcing, a fast time scale of decades to centuries, and a slow time scale of millennia. These two time scales become unstable at different thresholds of bed slope, indicating that there are distinct slow and fast forms of the marine ice sheet instability. We derive simple expressions for the approximate magnitude and transient evolution of the stable glacier response to external forcing, which depend on the equilibrium glacier state and the strength of nonlinearity in forcing processes. The slow response rate of marine‐terminating glaciers indicates that current changes at some glaciers are set to continue and accelerate in coming centuries in response to past climate forcing and that the current extent of change at these glaciers is likely a small fraction of the future committed change caused by past climate forcing. Finally, we find that changing the amplitude of natural fluctuations in some nonlinear forcing processes, such as ice shelf calving, changes the equilibrium glacier state.more » « less
-
Abstract Variability in oceanic conditions directly impacts ice loss from marine outlet glaciers in Greenland, influencing the ice sheet mass balance. Oceanic conditions are available from Atmosphere‐Ocean Global Climate Model (AOGCM) output, but these models require extensive computational resources and lack the fine resolution needed to simulate ocean dynamics on the Greenland continental shelf and close to glacier marine termini. Here, we develop a statistical approach to generate ocean forcing for ice sheet model simulations, which incorporates natural spatiotemporal variability and anthropogenic changes. Starting from raw AOGCM ocean heat content, we apply: (a) a bias‐correction using ocean reanalysis, (b) an extrapolation accounting for on‐shelf ocean dynamics, and (c) stochastic time series models to generate realizations of natural variability. The bias‐correction reduces model errors by ∼25% when compared to independent in‐situ measurements. The bias‐corrected time series are subsequently extrapolated to fjord mouth locations using relations constrained from available high‐resolution regional ocean model results. The stochastic time series models reproduce the spatial correlation, characteristic timescales, and the amplitude of natural variability of bias‐corrected AOGCMs, but at negligible computational expense. We demonstrate the efficiency of this method by generating >6,000 time series of ocean forcing for >200 Greenland marine‐terminating glacier locations until 2100. As our method is computationally efficient and adaptable to any ocean model output and reanalysis product, it provides flexibility in exploring sensitivity to ocean conditions in Greenland ice sheet model simulations. We provide the output and workflow in an open‐source repository, and discuss advantages and future developments for our method.
-
Abstract. Many marine-terminating outlet glaciers have retreated rapidly in recent decades, but these changes have not been formally attributed to anthropogenic climate change. A key challenge for such an attribution assessment is that if glacier termini are sufficiently perturbed from bathymetric highs, ice-dynamic feedbacks can cause rapid retreat even without further climate forcing. In the presence of internal climate variability, attribution thus depends on understanding whether (or how frequently) these rapid retreats could be triggered by climatic noise alone. Our simulations with idealized glaciers show that in a noisy climate, rapid retreat is a stochastic phenomenon. We therefore propose a probabilistic approach to attribution and present a framework for analysis that uses ensembles of many simulations with independent realizations of random climate variability. Synthetic experiments show that century-scale climate trends substantially increase the likelihood of rapid glacier retreat. This effect depends on the timescales over which ice dynamics integrate forcing. For a population of synthetic glaciers with different topographies, we find that external trends increase the number of large retreats triggered within the population, offering a metric for regional attribution. Our analyses suggest that formal attribution studies are tractable and should be further pursued to clarify the human role in recent ice-sheet change. We emphasize that early-industrial-era constraints on glacier and climate state are likely to be crucial for such studies.more » « less
-
Abstract The uncertain response of marine terminating outlet glaciers to climate change at time scales beyond short-term observation limits models of future sea level rise. At temperate tidewater margins, abundant subglacial meltwater forms morainal banks (marine shoals) or ice-contact deltas that reduce water depth, stabilizing grounding lines and slowing or reversing glacial retreat. Here we present a radiocarbon-dated record from Integrated Ocean Drilling Program (IODP) Site U1421 that tracks the terminus of the largest Alaskan Cordilleran Ice Sheet outlet glacier during Last Glacial Maximum climate transitions. Sedimentation rates, ice-rafted debris, and microfossil and biogeochemical proxies, show repeated abrupt collapses and slow advances typical of the tidewater glacier cycle observed in modern systems. When global sea level rise exceeded the local rate of bank building, the cycle of readvances stopped leading to irreversible retreat. These results support theory that suggests sediment dynamics can control tidewater terminus position on an open shelf under temperate conditions delaying climate-driven retreat.