Abstract Ultra‐low frequency (ULF) waves radially diffuse hundreds‐keV to few‐MeV electrons in the magnetosphere, as the range of drift frequencies of such electrons overlaps with the wave frequencies, leading to resonant interactions. Theoretically this process is described by analytic expressions of the resonant interactions between electrons and ULF wave modes in a background magnetic field. However, most expressions of the radial diffusion rates are derived for equatorially mirroring electrons and are based on estimates of the power of ULF waves that are obtained either from spacecraft close to the equatorial plane or from the ground but mapped to the equatorial plane. Based on recent statistical in situ observations, it was found that the wave power of magnetic fluctuations is significantly enhanced away from the magnetic equator. In this study, the distribution of the wave amplitudes as a function of magnetic latitude is compared against models simulating the natural modes of oscillation of magnetospheric field lines, with which they are found to be consistent. Energetic electrons are subsequently traced in 3D model fields that include a latitudinal dependence that is similar to measurements and to the natural modes of oscillation. Particle tracing simulations show a significant dependence of the radial transport of relativistic electrons on pitch angle, with off‐equatorial electrons experiencing considerably higher radial transport, as they interact with ULF wave fluctuations of higher amplitude than equatorial electrons. These findings point to the need for incorporating pitch‐angle‐dependent radial diffusion coefficients in global radiation belt models.
more »
« less
Distribution of ULF Wave Power in Magnetic Latitude and Local Time Using THEMIS and Arase Measurements
Abstract Ultra‐low‐frequency (ULF) waves are known to radially diffuse hundreds‐keV to few‐MeV electrons in the magnetosphere, as the range of drift frequencies of such electrons overlaps with the frequencies of the waves, leading to resonant interactions. The theoretical framework for this process is described by analytic expressions of the resonant interactions between electrons and toroidal and poloidal ULF wave modes in a background magnetic field. However, most expressions estimate the radial diffusion rates based on estimates of the power of ULF waves that are obtained either from spacecraft close to the equatorial plane or from the ground. In this study, using multiyear measurements from the THEMIS and Arase missions, we present a statistical analysis of the distribution of ULF wave power in magnetic latitude and local time and show that the wave power of the radial and azimuthal components of the magnetic field increases away from the magnetic equator. Our result could have significant implications for the radial diffusion rates as currently estimated.
more »
« less
- PAR ID:
- 10382503
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 127
- Issue:
- 10
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4‐5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long‐lasting, drift‐periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up to ∼7.7 MeV in the outer radiation belt, observed by the Van Allen Probes mission. During this March 2017 event, multi‐MeV electron flux oscillations at the electron drift frequency appeared coincidently with enhanced Pc5 ULF wave activity and lasted for over 10 h in the center of the outer belt. The amplitude of such flux oscillations is well correlated with the radial gradient of electron phase space density (PSD), with almost no oscillation observed near the PSD peak. The temporal evolution of the PSD radial profile also suggests the dominant role of radial diffusion in multi‐MeV electron dynamics during this event. By combining these observations, we conclude that these multi‐MeV electron flux oscillations are caused by the resonant interactions between electrons and broadband Pc5 ULF waves and are an indicator of the ongoing radial diffusion process during this event. They contain essential information of radial diffusion and have the potential to be further used to quantify the radial diffusion effects and aid in a better understanding of this prevailing mechanism.more » « less
-
Abstract The Earth's magnetosphere supports a variety of Magnetohydrodynamic (MHD) normal modes with Ultra Low Frequencies (ULF) including standing Alfvén waves and cavity/waveguide modes. Their amplitudes and frequencies depend in part on the properties of the magnetosphere (size of cavity, wave speed distribution). In this work, we use ∼13 years of Time History of Events and Macroscale Interactions during Substorms satellite magnetic field observations, combined with linearized MHD numerical simulations, to examine the properties of MHD normal modes in the regionL > 5 and for frequencies <80 mHz. We identify persistent normal mode structure in observed dawn sector power spectra with frequency‐dependent wave power peaks like those obtained from simulation ensemble averages, where the simulations assume different radial Alfvén speed profiles and magnetopause locations. We further show with both observations and simulations how frequency‐dependent wave power peaks atL > 5 depend on both the magnetopause location and the location of peaks in the radial Alfvén speed profile. Finally, we discuss how these results might be used to better model radiation belt electron dynamics related to ULF waves.more » « less
-
Abstract Disturbances in ionospheric Total Electron Content (dTEC) with frequencies of 1–100 mHz can be driven from above by processes in the magnetosphere and below by processes on the Earth's surface and lower atmosphere. Past studies showed the potential of dTEC as a diagnostic of magnetospheric Ultra Low Frequency (ULF) wave activity and demonstrated that ULF dTEC can impact space weather by, for example, changing ionospheric conductance. However, most past work has focused on single event studies, lacked magnetospheric context, or used sampling rates too low to capture most ULF waves. Here, we perform a statistical study using Time History of Events and Macrsoscale Interactions during Substorms (THEMIS) satellite conjunctions with a ground‐based magnetometer and Global Navigation Satellite System (GNSS) receiver at 65° magnetic latitude. We find that magnetospheric ULF waves generate dTEC variations across the broad range of frequencies examined in this study (2–50 mHz), and that ULF dTEC wave power is correlated with Kp, AE, solar wind speed, and magnetic field wave power observed in the magnetosphere and on the ground. We further find that magnetospheric ULF waves generate dTEC amplitudes up to TECU ( background), with the largest amplitudes occurring during geomagnetically active conditions, at frequencies below 7 mHz, and at local times near midnight. We finally discuss the implications of our results for magnetosphere‐ionosphere coupling and remote sensing techniques related to ULF waves.more » « less
-
Abstract Characterizing the azimuthal mode number,m, of ultralow‐frequency (ULF) waves is necessary for calculating radial diffusion of radiation belt electrons. A cross‐spectral technique is applied to the compressional Pc5 ULF waves observed by multiple pairs of GOES satellites to estimate the azimuthal mode structure during the 28‐31 May 2010 storm. We find that allowing for both positive and negativemis important to achieve a more realistic distribution of mode numbers and to resolve wave propagation direction. During the storm commencement when the solar wind dynamic pressure is high, ULF wave power is found to dominate at low‐mode numbers. An interesting change of sign inmoccurred around noon, which is consistent with the driving of ULF waves by solar wind buffeting around noon, creating antisunward wave propagation. The low‐mode ULF waves are also found to have a less global coverage in magnetic local time than previously assumed. In contrast, during the storm main phase and early recovery phase when the solar wind dynamic pressure is low and the auroral electrojet index is high, wave power is shown to be distributed over all modes from low to high. The high‐mode waves are found to cover a wider range of magnetic local time than what was previously assumed. Furthermore, to reduce the 2nπambiguity in resolvingm, a cross‐pair analysis is performed on satellite field measurements for the first time, which is demonstrated to be effective in generating more reliable mode structure of ULF waves during high auroral electrojet periods.more » « less
An official website of the United States government
