skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating the Azimuthal Mode Structure of ULF Waves Based on Multiple GOES Satellite Observations
Abstract Characterizing the azimuthal mode number,m, of ultralow‐frequency (ULF) waves is necessary for calculating radial diffusion of radiation belt electrons. A cross‐spectral technique is applied to the compressional Pc5 ULF waves observed by multiple pairs of GOES satellites to estimate the azimuthal mode structure during the 28‐31 May 2010 storm. We find that allowing for both positive and negativemis important to achieve a more realistic distribution of mode numbers and to resolve wave propagation direction. During the storm commencement when the solar wind dynamic pressure is high, ULF wave power is found to dominate at low‐mode numbers. An interesting change of sign inmoccurred around noon, which is consistent with the driving of ULF waves by solar wind buffeting around noon, creating antisunward wave propagation. The low‐mode ULF waves are also found to have a less global coverage in magnetic local time than previously assumed. In contrast, during the storm main phase and early recovery phase when the solar wind dynamic pressure is low and the auroral electrojet index is high, wave power is shown to be distributed over all modes from low to high. The high‐mode waves are found to cover a wider range of magnetic local time than what was previously assumed. Furthermore, to reduce the 2nπambiguity in resolvingm, a cross‐pair analysis is performed on satellite field measurements for the first time, which is demonstrated to be effective in generating more reliable mode structure of ULF waves during high auroral electrojet periods.  more » « less
Award ID(s):
1752736
PAR ID:
10375095
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
124
Issue:
7
ISSN:
2169-9380
Page Range / eLocation ID:
p. 5009-5026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient‐driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (by the THEMIS probes, Geotail satellite, GOES satellites, and Van Allen probes) and ground‐based (by the all‐sky imager at South Pole and ground‐based magnetometers) observations to simultaneously analyze the waves from the foreshock region to the dayside and nightside magnetosphere. Both of our two events show that the Pc5 ULF waves are generated by foreshock transients in the dayside magnetosphere. The in situ observations by THEMIS A and D and the 2‐D auroral signatures show that the compressional mode waves are likely broadband and coupled to the FLRs with different frequencies and different azimuthal phase speeds. This is the first report that foreshock transients can drive both low‐ and high‐m FLRs, with the azimuthal wave numbers varying from ~5 to ~23. Moreover, the Pc5 ULF waves propagated antisunward to midnight, this can potentially modulate magnetospheric and ionospheric dynamics globally. 
    more » « less
  2. Abstract Ultra low frequency (ULF; 1 mHz ‐ several Hz) waves are key to energy transport within the geospace system, yet their contribution to Joule heating in the upper atmosphere remains poorly quantified. This study statistically examines Joule heating associated with ionospheric ULF perturbations using Super Dual Auroral Radar Network (SuperDARN) data spanning middle to polar latitudes. Our analysis utilizes high‐time‐resolution measurements from SuperDARN high‐frequency coherent scatter radars operating in a special mode, sampling three “camping beams” approximately every 18 s. We focus on ULF perturbations within the Pc5 frequency range (1.6–6.7 mHz), estimating Joule heating rates from ionospheric electric fields derived from SuperDARN data and height‐integrated Pedersen conductance from empirical models. The analysis includes statistical characterization of Pc5 wave occurrence, electric fields, Joule heating rates, and azimuthal wave numbers. Our results reveal enhanced electric fields and Joule heating rates in the morning and pre‐midnight sectors, even though Pc5 wave occurrences peak in the afternoon. Joule heating is more pronounced in the high‐latitude morning sector during northward interplanetary magnetic field conditions, attributed to local time asymmetry in Pedersen conductance and Pc5 waves driven by Kelvin‐Helmholtz instability. Pc5 waves observed by multiple camping beams predominantly propagate westward at low azimuthal wave numbers , while high‐m waves propagate mainly eastward. Although Joule heating estimates may be underestimated due to assumptions about empirical conductance models and the underestimation of electric fields resulting from SuperDARN line‐of‐sight velocity measurements, these findings offer valuable insights into ULF wave‐related energy dissipation in the geospace system. 
    more » « less
  3. Abstract Although lagged correlations have suggested influences of solar wind velocity (V) and number density (N), Bz, ultralow frequency (ULF) wave power, and substorms (as measured by the auroral electrojet (AE) index) on MeV electron flux at geosynchronous orbit over an impressive number of hours and days, a satellite's diurnal cycle can inflate correlations, associations between drivers may produce spurious effects, and correlations between all previous time steps may create an appearance of additive influence over many hours. Autoregressive‐moving average transfer function (ARMAX) multiple regressions incorporating previous hours simultaneously can eliminate cycles and assess the impact of parameters, at each hour, while others are controlled. ARMAX influences are an order of magnitude lower than correlations uncorrected for time behavior. Most influence occurs within a few hours, not the many hours suggested by correlation. A log transformation accounts for nonlinearities. Over all hours, solar wind velocity (V) and number density (N) show an initial negative impact, with longer term positive influences over the 9 (V) or 27 (N) hr. Bz is initially a positive influence, with a longer term (6 hr) negative effect. ULF waves impact flux in the first (positive) and second (negative) hour before the flux measurement, with further negative influences in the 12–24 hr before. AE (representing electron injection by substorms) shows only a short term (1 hr) positive influence. However, when only recovery and after‐recovery storm periods are considered (using stepwise regression), there are positive influences of ULF waves, AE, andV, with negative influences ofNand Bz. 
    more » « less
  4. Abstract The nature of the 3‐s ultralow frequency (ULF) wave in the Earth's foreshock region and the associated wave‐particle interaction are not yet well understood. We investigate the 3‐s ULF waves using Magnetospheric Multiscale (MMS) observations. By combining the plasma rest frame wave properties obtained from multiple methods with the instability analysis based on the velocity distribution in the linear wave stage, the ULF wave is determined to be due to the ion/ion nonresonant mode instability. The interaction between the wave and ions is analyzed using the phase relationship between the transverse wave fields and ion velocities and using the longitudinal momentum equation. During the stage when ULF waves have sinusoidal waveforms up to |dB|/|B0| ~ 3, wheredBis the wave magnetic field andB0is the background magnetic field, the wave electric fields perpendicular toB0do negative work to solar wind ions; alongB0, a longitudinal electric field develops, but theV × Bforce is stronger and leads to solar wind ion deceleration. During the same wave stage, the backstreaming beam ions gain energy from the transverse wave fields and get deceleration alongB0by the longitudinal electric field. The ULF wave leads to electron heating, preferentially in the direction perpendicular to the local magnetic field. Secondary waves are generated within the ULF waveforms, including whistler waves near half of the electron cyclotron frequency, high‐frequency electrostatic waves, and magnetosonic whistler waves. The work improves the understanding of the nature of 3‐s ULF waves and the associated wave‐particle interaction. 
    more » « less
  5. Abstract GPS total electron content (TEC) measurements were used to investigate high‐m ultralow frequency (ULF) waves during the recovery phase of a geomagnetic storm. ULF wave signals in TEC data show high coherence and significant common power in the wavelet coherence and cross wavelet transform analyses with magnetic field radial component data from GOES‐15. They did not cause significant ionospheric scintillation or ground magnetic signatures due to ionospheric screening effects. An automatic identification procedure is developed to identify ULF wave signature in TEC data from 10 GPS receivers on January 25, 2016. The waves were mainly distributed on the dayside and post dusk sector from ∼64° to ∼71° magnetic latitude. This is the first time that the large‐scale 2D spatial structure and temporal evolution of high‐m ULF waves are revealed, which demonstrates TEC measurements as an effective high‐m ULF wave remote sensing tool. 
    more » « less