skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Summarizing Sets of Related ML-Driven Recommendations for Improving File Management in Cloud Storage
Personal cloud storage systems increasingly offer recommendations to help users retrieve or manage files of interest. For example, Google Drive's Quick Access predicts and surfaces files likely to be accessed. However, when multiple, related recommendations are made, interfaces typically present recommended files and any accompanying explanations individually, burdening users. To improve the usability of ML-driven personal information management systems, we propose a new method for summarizing related file-management recommendations. We generate succinct summaries of groups of related files being recommended. Summaries reference the files' shared characteristics. Through a within-subjects online study in which participants received recommendations for groups of files in their own Google Drive, we compare our summaries to baselines like visualizing a decision tree model or simply listing the files in a group. Compared to the baselines, participants expressed greater understanding and confidence in accepting recommendations when shown our novel recommendation summaries.  more » « less
Award ID(s):
1801663 1835890
PAR ID:
10382523
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 35th ACM Symposium on User Interface Software and Technology (UIST)
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Users face many challenges in keeping their personal file collections organized. While current file-management interfaces help users retrieve files in disorganized repositories, they do not aid in organization. Pertinent files can be difficult to find, and files that should have been deleted may remain. To help, we designed KondoCloud, a file-browser interface for personal cloud storage. KondoCloud makes machine learning-based recommendations of files users may want to retrieve, move, or delete. These recommendations leverage the intuition that similar files should be managed similarly. We developed and evaluated KondoCloud through two complementary online user studies. In our Observation Study, we logged the actions of 69 participants who spent 30 minutes manually organizing their own Google Drive repositories. We identified high-level organizational strategies, including moving related files to newly created sub-folders and extensively deleting files. To train the classifiers that underpin KondoCloud's recommendations, we had participants label whether pairs of files were similar and whether they should be managed similarly. In addition, we extracted ten metadata and content features from all files in participants' repositories. Our logistic regression classifiers all achieved F1 scores of 0.72 or higher. In our Evaluation Study, 62 participants used KondoCloud either with or without recommendations. Roughly half of participants accepted a non-trivial fraction of recommendations, and some participants accepted nearly all of them. Participants who were shown the recommendations were more likely to delete related files located in different directories. They also generally felt the recommendations improved efficiency. Participants who were not shown recommendations nonetheless manually performed about a third of the actions that would have been recommended. 
    more » « less
  2. null (Ed.)
    With the ubiquity of data breaches, forgotten-about files stored in the cloud create latent privacy risks. We take a holistic approach to help users identify sensitive, unwanted files in cloud storage. We first conducted 17 qualitative interviews to characterize factors that make humans perceive a file as sensitive, useful, and worthy of either protection or deletion. Building on our findings, we conducted a primarily quantitative online study. We showed 108 long-term users of Google Drive or Dropbox a selection of files from their accounts. They labeled and explained these files' sensitivity, usefulness, and desired management (whether they wanted to keep, delete, or protect them). For each file, we collected many metadata and content features, building a training dataset of 3,525 labeled files. We then built Aletheia, which predicts a file's perceived sensitivity and usefulness, as well as its desired management. Aletheia improves over state-of-the-art baselines by 26% to 159%, predicting users' desired file-management decisions with 79% accuracy. Notably, predicting subjective perceptions of usefulness and sensitivity led to a 10% absolute accuracy improvement in predicting desired file-management decisions. Aletheia's performance validates a human-centric approach to feature selection when using inference techniques on subjective security-related tasks. It also improves upon the state of the art in minimizing the attack surface of cloud accounts. 
    more » « less
  3. null (Ed.)
    With the ubiquity of data breaches, forgotten-about files stored in the cloud create latent privacy risks. We take a holistic approach to help users identify sensitive, unwanted files in cloud storage. We first conducted 17 qualitative interviews to characterize factors that make humans perceive a file as sensitive, useful, and worthy of either protection or deletion. Building on our findings, we conducted a primarily quantitative online study. We showed 108 long-term users of Google Drive or Dropbox a selection of files from their accounts. They labeled and explained these files’ sensitivity, usefulness, and desired management (whether they wanted to keep, delete, or protect them). For each file, we collected many metadata and content features, building a training dataset of 3,525 labeled files. We then built Aletheia, which predicts a file’s perceived sensitivity and usefulness, as well as its desired management. Aletheia improves over state-of-the-art baselines by 26% to 159%, predicting users’ desired file-management decisions with 79% accuracy. Notably, predicting subjective perceptions of usefulness and sensitivity led to a 10% absolute accuracy improvement in predicting desired file-management decisions. Aletheia’s performance validates a human-centric approach to feature selection when using inference techniques on subjective security-related tasks. It also improves upon the state of the art in minimizing the attack surface of cloud accounts. 
    more » « less
  4. null (Ed.)
    Prior work suggests that users conceptualize the organization of personal collections of digital files through the lens of similarity. However, it is unclear to what degree similar files are actually located near one another (e.g., in the same directory) in actual file collections, or whether leveraging file similarity can improve information retrieval and organization for disorganized collections of files. To this end, we conducted an online study combining automated analysis of 50 Google Drive and Dropbox users' cloud accounts with a survey asking about pairs of files from those accounts. We found that many files located in different parts of file hierarchies were similar in how they were perceived by participants, as well as in their algorithmically extractable features. Participants often wished to co-manage similar files (e.g., deleting one file implied deleting the other file) even if they were far apart in the file hierarchy. To further understand this relationship, we built regression models, finding several algorithmically extractable file features to be predictive of human perceptions of file similarity and desired file co-management. Our findings pave the way for leveraging file similarity to automatically recommend access, move, or delete operations based on users' prior interactions with similar files. 
    more » « less
  5. AbstractManaging, processing, and sharing research data and experimental context produced on modern scientific instrumentation all present challenges to the materials research community. To address these issues, two MaRDA Working Groups on FAIR Data in Materials Microscopy Metadata and Materials Laboratory Information Management Systems (LIMS) convened and generated recommended best practices regarding data handling in the materials research community. Overall, the Microscopy Metadata Group recommends (1) instruments should capture comprehensive metadata about operators, specimens/samples, instrument conditions, and data formation; and (2) microscopy data and metadata should use standardized vocabularies and community standard identifiers. The LIMS Group produced the following guides and recommendations: (1) a cost and benefit comparison when implementing LIMS; (2) summaries of prerequisite requirements, capabilities, and roles of LIMS stakeholders; and (3) a review of metadata schemas and information-storage best practices in LIMS. Together, the groups hope these recommendations will accelerate breakthrough scientific discoveries via FAIR data. Impact statementWith the deluge of data produced in today’s materials research laboratories, it is critical that researchers stay abreast of developments in modern research data management, particularly as it relates to the international effort to make data more FAIR – findable, accessible, interoperable, and reusable. Most crucially, being able to responsibly share research data is a foundational means to increase progress on the materials research problems of high importance to science and society. Operational data management and accessibility are pivotal in accelerating innovation in materials science and engineering and to address mounting challenges facing our world, but the materials research community generally lags behind its cognate disciplines in these areas. To address this issue, the Materials Research Coordination Network (MaRCN) convened two working groups comprised of experts from across the materials data landscape in order to make recommendations to the community related to improvements in materials microscopy metadata standards and the use of Laboratory Information Management Systems (LIMS) in materials research. This manuscript contains a set of recommendations from the working groups and reflects the culmination of their 18-month efforts, with the hope of promoting discussion and reflection within the broader materials research community in these areas. Graphical abstract 
    more » « less