skip to main content


Title: Summarizing Sets of Related ML-Driven Recommendations for Improving File Management in Cloud Storage
Personal cloud storage systems increasingly offer recommendations to help users retrieve or manage files of interest. For example, Google Drive's Quick Access predicts and surfaces files likely to be accessed. However, when multiple, related recommendations are made, interfaces typically present recommended files and any accompanying explanations individually, burdening users. To improve the usability of ML-driven personal information management systems, we propose a new method for summarizing related file-management recommendations. We generate succinct summaries of groups of related files being recommended. Summaries reference the files' shared characteristics. Through a within-subjects online study in which participants received recommendations for groups of files in their own Google Drive, we compare our summaries to baselines like visualizing a decision tree model or simply listing the files in a group. Compared to the baselines, participants expressed greater understanding and confidence in accepting recommendations when shown our novel recommendation summaries.  more » « less
Award ID(s):
1801663 1835890
NSF-PAR ID:
10382523
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 35th ACM Symposium on User Interface Software and Technology (UIST)
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Users face many challenges in keeping their personal file collections organized. While current file-management interfaces help users retrieve files in disorganized repositories, they do not aid in organization. Pertinent files can be difficult to find, and files that should have been deleted may remain. To help, we designed KondoCloud, a file-browser interface for personal cloud storage. KondoCloud makes machine learning-based recommendations of files users may want to retrieve, move, or delete. These recommendations leverage the intuition that similar files should be managed similarly. We developed and evaluated KondoCloud through two complementary online user studies. In our Observation Study, we logged the actions of 69 participants who spent 30 minutes manually organizing their own Google Drive repositories. We identified high-level organizational strategies, including moving related files to newly created sub-folders and extensively deleting files. To train the classifiers that underpin KondoCloud's recommendations, we had participants label whether pairs of files were similar and whether they should be managed similarly. In addition, we extracted ten metadata and content features from all files in participants' repositories. Our logistic regression classifiers all achieved F1 scores of 0.72 or higher. In our Evaluation Study, 62 participants used KondoCloud either with or without recommendations. Roughly half of participants accepted a non-trivial fraction of recommendations, and some participants accepted nearly all of them. Participants who were shown the recommendations were more likely to delete related files located in different directories. They also generally felt the recommendations improved efficiency. Participants who were not shown recommendations nonetheless manually performed about a third of the actions that would have been recommended. 
    more » « less
  2. null (Ed.)
    With the ubiquity of data breaches, forgotten-about files stored in the cloud create latent privacy risks. We take a holistic approach to help users identify sensitive, unwanted files in cloud storage. We first conducted 17 qualitative interviews to characterize factors that make humans perceive a file as sensitive, useful, and worthy of either protection or deletion. Building on our findings, we conducted a primarily quantitative online study. We showed 108 long-term users of Google Drive or Dropbox a selection of files from their accounts. They labeled and explained these files’ sensitivity, usefulness, and desired management (whether they wanted to keep, delete, or protect them). For each file, we collected many metadata and content features, building a training dataset of 3,525 labeled files. We then built Aletheia, which predicts a file’s perceived sensitivity and usefulness, as well as its desired management. Aletheia improves over state-of-the-art baselines by 26% to 159%, predicting users’ desired file-management decisions with 79% accuracy. Notably, predicting subjective perceptions of usefulness and sensitivity led to a 10% absolute accuracy improvement in predicting desired file-management decisions. Aletheia’s performance validates a human-centric approach to feature selection when using inference techniques on subjective security-related tasks. It also improves upon the state of the art in minimizing the attack surface of cloud accounts. 
    more » « less
  3. null (Ed.)
    With the ubiquity of data breaches, forgotten-about files stored in the cloud create latent privacy risks. We take a holistic approach to help users identify sensitive, unwanted files in cloud storage. We first conducted 17 qualitative interviews to characterize factors that make humans perceive a file as sensitive, useful, and worthy of either protection or deletion. Building on our findings, we conducted a primarily quantitative online study. We showed 108 long-term users of Google Drive or Dropbox a selection of files from their accounts. They labeled and explained these files' sensitivity, usefulness, and desired management (whether they wanted to keep, delete, or protect them). For each file, we collected many metadata and content features, building a training dataset of 3,525 labeled files. We then built Aletheia, which predicts a file's perceived sensitivity and usefulness, as well as its desired management. Aletheia improves over state-of-the-art baselines by 26% to 159%, predicting users' desired file-management decisions with 79% accuracy. Notably, predicting subjective perceptions of usefulness and sensitivity led to a 10% absolute accuracy improvement in predicting desired file-management decisions. Aletheia's performance validates a human-centric approach to feature selection when using inference techniques on subjective security-related tasks. It also improves upon the state of the art in minimizing the attack surface of cloud accounts. 
    more » « less
  4. null (Ed.)
    Prior work suggests that users conceptualize the organization of personal collections of digital files through the lens of similarity. However, it is unclear to what degree similar files are actually located near one another (e.g., in the same directory) in actual file collections, or whether leveraging file similarity can improve information retrieval and organization for disorganized collections of files. To this end, we conducted an online study combining automated analysis of 50 Google Drive and Dropbox users' cloud accounts with a survey asking about pairs of files from those accounts. We found that many files located in different parts of file hierarchies were similar in how they were perceived by participants, as well as in their algorithmically extractable features. Participants often wished to co-manage similar files (e.g., deleting one file implied deleting the other file) even if they were far apart in the file hierarchy. To further understand this relationship, we built regression models, finding several algorithmically extractable file features to be predictive of human perceptions of file similarity and desired file co-management. Our findings pave the way for leveraging file similarity to automatically recommend access, move, or delete operations based on users' prior interactions with similar files. 
    more » « less
  5. null (Ed.)
    The Twitter-Based Knowledge Graph for Researchers project is an effort to construct a knowledge graph of computation-based tasks and corresponding outputs. It will be utilized by subject matter experts, statisticians, and developers. A knowledge graph is a directed graph of knowledge accumulated from a variety of sources. For our application, Subject Matter Experts (SMEs) are experts in their respective non-computer science fields, but are not necessarily experienced with running heavy computation on datasets. As a result, they find it difficult to generate workflows for their projects involving Twitter data and advanced analysis. Workflow management systems and libraries that facilitate computation are only practical when the users of these systems understand what analysis they need to perform. Our goal is to bridge this gap in understanding. Our queryable knowledge graph will generate a visual workflow for these experts and researchers to achieve their project goals. After meeting with our client, we established two primary deliverables. First, we needed to create an ontology of all Twitter-related information that an SME might want to answer. Secondly, we needed to build a knowledge graph based on this ontology and produce a set of APIs to trigger a set of network algorithms based on the information queried to the graph. An ontology is simply the class structure/schema for the graph. Throughout future meetings, we established some more specific additional requirements. Most importantly, the client stressed that users should be able to bring their own data and add it to our knowledge graph. As more research is completed and new technologies are released, it will be important to be able to edit and add to the knowledge graph. Next, we must be able to provide metrics about the data itself. These metrics will be useful for both our own work, and future research surrounding graph search problems and search optimization. Additionally, our system should provide users with information regarding the original domain that the algorithms and workflows were run against. That way they can choose the best workflow for their data. The project team first conducted a literature review, reading reports from the CS5604 Information Retrieval courses in 2016 and 2017 to extract information related to Twitter data and algorithms. This information was used to construct our raw ontology in Google Sheets, which contained a set of dataset-algorithm-dataset tuples. The raw ontology was then converted into nodes and edges csv files for building the knowledge graph. After implementing our original solution on a CentOS virtual machine hosted by the Virginia Tech Department of Computer Science, we transitioned our solution to Grakn, an open-source knowledge graph database that supports hypergraph functionality. When finalizing our workflow paths, we noted some nodes depended on completion of two or more inputs, representing an ”AND” edge. This phenomenon is modeled as a hyperedge with Grakn, initiating our transition from Neo4J to Grakn. Currently, our system supports queries through the console, where a user can type a Graql statement to retrieve information about data in the graph, from relationships to entities to derived rules. The user can also interact with the data via Grakn's data visualizer: Workbase. The user can enter Graql queries to visualize connections within the knowledge graph. 
    more » « less