skip to main content


Search for: All records

Award ID contains: 1801663

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Personal cloud storage systems increasingly offer recommendations to help users retrieve or manage files of interest. For example, Google Drive's Quick Access predicts and surfaces files likely to be accessed. However, when multiple, related recommendations are made, interfaces typically present recommended files and any accompanying explanations individually, burdening users. To improve the usability of ML-driven personal information management systems, we propose a new method for summarizing related file-management recommendations. We generate succinct summaries of groups of related files being recommended. Summaries reference the files' shared characteristics. Through a within-subjects online study in which participants received recommendations for groups of files in their own Google Drive, we compare our summaries to baselines like visualizing a decision tree model or simply listing the files in a group. Compared to the baselines, participants expressed greater understanding and confidence in accepting recommendations when shown our novel recommendation summaries. 
    more » « less
  2. null (Ed.)
    Users face many challenges in keeping their personal file collections organized. While current file-management interfaces help users retrieve files in disorganized repositories, they do not aid in organization. Pertinent files can be difficult to find, and files that should have been deleted may remain. To help, we designed KondoCloud, a file-browser interface for personal cloud storage. KondoCloud makes machine learning-based recommendations of files users may want to retrieve, move, or delete. These recommendations leverage the intuition that similar files should be managed similarly. We developed and evaluated KondoCloud through two complementary online user studies. In our Observation Study, we logged the actions of 69 participants who spent 30 minutes manually organizing their own Google Drive repositories. We identified high-level organizational strategies, including moving related files to newly created sub-folders and extensively deleting files. To train the classifiers that underpin KondoCloud's recommendations, we had participants label whether pairs of files were similar and whether they should be managed similarly. In addition, we extracted ten metadata and content features from all files in participants' repositories. Our logistic regression classifiers all achieved F1 scores of 0.72 or higher. In our Evaluation Study, 62 participants used KondoCloud either with or without recommendations. Roughly half of participants accepted a non-trivial fraction of recommendations, and some participants accepted nearly all of them. Participants who were shown the recommendations were more likely to delete related files located in different directories. They also generally felt the recommendations improved efficiency. Participants who were not shown recommendations nonetheless manually performed about a third of the actions that would have been recommended. 
    more » « less
  3. null (Ed.)
    With the ubiquity of data breaches, forgotten-about files stored in the cloud create latent privacy risks. We take a holistic approach to help users identify sensitive, unwanted files in cloud storage. We first conducted 17 qualitative interviews to characterize factors that make humans perceive a file as sensitive, useful, and worthy of either protection or deletion. Building on our findings, we conducted a primarily quantitative online study. We showed 108 long-term users of Google Drive or Dropbox a selection of files from their accounts. They labeled and explained these files' sensitivity, usefulness, and desired management (whether they wanted to keep, delete, or protect them). For each file, we collected many metadata and content features, building a training dataset of 3,525 labeled files. We then built Aletheia, which predicts a file's perceived sensitivity and usefulness, as well as its desired management. Aletheia improves over state-of-the-art baselines by 26% to 159%, predicting users' desired file-management decisions with 79% accuracy. Notably, predicting subjective perceptions of usefulness and sensitivity led to a 10% absolute accuracy improvement in predicting desired file-management decisions. Aletheia's performance validates a human-centric approach to feature selection when using inference techniques on subjective security-related tasks. It also improves upon the state of the art in minimizing the attack surface of cloud accounts. 
    more » « less
  4. null (Ed.)
    Prior work suggests that users conceptualize the organization of personal collections of digital files through the lens of similarity. However, it is unclear to what degree similar files are actually located near one another (e.g., in the same directory) in actual file collections, or whether leveraging file similarity can improve information retrieval and organization for disorganized collections of files. To this end, we conducted an online study combining automated analysis of 50 Google Drive and Dropbox users' cloud accounts with a survey asking about pairs of files from those accounts. We found that many files located in different parts of file hierarchies were similar in how they were perceived by participants, as well as in their algorithmically extractable features. Participants often wished to co-manage similar files (e.g., deleting one file implied deleting the other file) even if they were far apart in the file hierarchy. To further understand this relationship, we built regression models, finding several algorithmically extractable file features to be predictive of human perceptions of file similarity and desired file co-management. Our findings pave the way for leveraging file similarity to automatically recommend access, move, or delete operations based on users' prior interactions with similar files. 
    more » « less
  5. null (Ed.)
    Many social media sites permit users to delete, edit, anonymize, or otherwise modify past posts. These mechanisms enable users to protect their privacy, but also to essentially change the past. We investigate perceptions of the necessity and acceptability of these mechanisms. Drawing on boundary-regulation theories of privacy, we first identify how users who reshared or responded to a post could be impacted by its retrospective modification. These mechanisms can cause boundary turbulence by recontextualizing past content and limiting accountability. In contrast, not permitting modification can lessen privacy and perpetuate harms of regrettable content. To understand how users perceive these mechanisms, we conducted 15 semi-structured interviews. Participants deemed retrospective modification crucial for fixing past mistakes. Nonetheless, they worried about the potential for deception through selective changes or removal. Participants were aware retrospective modification impacts others, yet felt these impacts could be minimized through context-aware usage of markers and proactive notifications. 
    more » « less
  6. When users post on social media, they protect their privacy by choosing an access control setting that is rarely revisited. Changes in users' lives and relationships, as well as social media platforms themselves, can cause mismatches between a post's active privacy setting and the desired setting. The importance of managing this setting combined with the high volume of potential friend-post pairs needing evaluation necessitate a semi-automated approach. We attack this problem through a combination of a user study and the development of automated inference of potentially mismatched privacy settings. A total of 78 Facebook users reevaluated the privacy settings for five of their Facebook posts, also indicating whether a selection of friends should be able to access each post. They also explained their decision. With this user data, we designed a classifier to identify posts with currently incorrect sharing settings. This classifier shows a 317% improvement over a baseline classifier based on friend interaction. We also find that many of the most useful features can be collected without user intervention, and we identify directions for improving the classifier's accuracy. 
    more » « less
  7. Online archives, including social media and cloud storage, store vast troves of personal data accumulated over many years. Recent work suggests that users feel the need to retrospectively manage security and privacy for this huge volume of content. However, few mechanisms and systems help these users complete this daunting task. To that end, we propose the creation of usable retrospective data management mechanisms, outlining our vision for a possible architecture to address this challenge. 
    more » « less