skip to main content


Title: Understanding PDF uncertainty in W boson mass measurements*
Abstract

We study the dependence of the transverse mass distribution of charged leptons and the missing energy on parton distributions (PDFs) adapted toWboson mass measurements at the CDF and ATLAS experiments. We compare the shape variations of the distribution induced by different PDFs and find that the spread of predictions from different PDF sets can be significantly larger than the PDF uncertainty predicted by a specific PDF set. We suggest analyzing the experimental data using up-to-date PDFs to gain a better understanding of the PDF uncertainties inWboson mass measurements. We also perform a series of Lagrange multiplier scans to identify the constraints on the transverse mass distribution imposed by individual data sets in the CT18 global analysis. In the case of the CDF measurement, the distribution is mostly sensitive tod-quark PDFs in the intermediatexregion, which are largely constrained by DIS and Drell-Yan data on deuteron targets and Tevatron lepton charge asymmetry data.

 
more » « less
Award ID(s):
2112829
NSF-PAR ID:
10382532
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Chinese Physics C
Volume:
46
Issue:
12
ISSN:
1674-1137
Page Range / eLocation ID:
Article No. 123110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract The production of the W ± bosons measured in p–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 8 . 16 TeV and Pb–Pb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV with ALICE at the LHC is presented. The W ± bosons are measured via their muonic decay channel, with the muon reconstructed in the pseudorapidity region − 4 < $$ {\eta}_{\textrm{lab}}^{\mu } $$ η lab μ < − 2 . 5 with transverse momentum $$ {p}_{\textrm{T}}^{\mu } $$ p T μ > 10 GeV /c . While in Pb–Pb collisions the measurements are performed in the forward (2 . 5 < $$ {y}_{\textrm{cms}}^{\mu } $$ y cms μ < 4) rapidity region, in p–Pb collisions, where the centre-of-mass frame is boosted with respect to the laboratory frame, the measurements are performed in the backward ( − 4 . 46 < $$ {y}_{\textrm{cms}}^{\mu } $$ y cms μ < − 2 . 96) and forward (2 . 03 < $$ {y}_{\textrm{cms}}^{\mu } $$ y cms μ < 3 . 53) rapidity regions. The W − and W + production cross sections, lepton-charge asymmetry, and nuclear modification factors are evaluated as a function of the muon rapidity. In order to study the production as a function of the p–Pb collision centrality, the production cross sections of the W − and W + bosons are combined and normalised to the average number of binary nucleon–nucleon collision 〈 N coll 〉. In Pb–Pb collisions, the same measurements are presented as a function of the collision centrality. Study of the binary scaling of the W ± -boson cross sections in p–Pb and Pb–Pb collisions is also reported. The results are compared with perturbative QCD calculations, with and without nuclear modifications of the Parton Distribution Functions (PDFs), as well as with available data at the LHC. Significant deviations from the theory expectations are found in the two collision systems, indicating that the measurements can provide additional constraints for the determination of nuclear PDFs and in particular of the light-quark distributions. 
    more » « less
  2. A bstract The W boson mass is measured using proton-proton collision data at $$ \sqrt{s} $$ s = 13 TeV corresponding to an integrated luminosity of 1.7 fb − 1 recorded during 2016 by the LHCb experiment. With a simultaneous fit of the muon q/p T distribution of a sample of W → μν decays and the ϕ * distribution of a sample of Z → μμ decays the W boson mass is determined to be $$ {m}_w=80354\pm {23}_{\mathrm{stat}}\pm {10}_{\mathrm{exp}}\pm {17}_{\mathrm{theory}}\pm {9}_{\mathrm{PDF}}\mathrm{MeV}, $$ m w = 80354 ± 23 stat ± 10 exp ± 17 theory ± 9 PDF MeV , where uncertainties correspond to contributions from statistical, experimental systematic, theoretical and parton distribution function sources. This is an average of results based on three recent global parton distribution function sets. The measurement agrees well with the prediction of the global electroweak fit and with previous measurements. 
    more » « less
  3. Abstract

    We propose a new observable for the measurement of the forward–backward asymmetry$$(A_{FB})$$(AFB)in Drell–Yan lepton production. At hadron colliders, the$$A_{FB}$$AFBdistribution is sensitive to both the electroweak (EW) fundamental parameter$$\sin ^{2} \theta _{W}$$sin2θW, the weak mixing angle, and the parton distribution functions (PDFs). Hence, the determination of$$\sin ^{2} \theta _{W}$$sin2θWand the updating of PDFs by directly using the same$$A_{FB}$$AFBspectrum are strongly correlated. This correlation would introduce large bias or uncertainty into both precise measurements of EW and PDF sectors. In this article, we show that the sensitivity of$$A_{FB}$$AFBon$$\sin ^{2} \theta _{W}$$sin2θWis dominated by its average value around theZpole region, while the shape (or gradient) of the$$A_{FB}$$AFBspectrum is insensitive to$$\sin ^{2} \theta _{W}$$sin2θWand contains important information on the PDF modeling. Accordingly, a new observable related to the gradient of the spectrum is introduced, and demonstrated to be able to significantly reduce the potential bias on the determination of$$\sin ^{2} \theta _{W}$$sin2θWwhen updating the PDFs using the same$$A_{FB}$$AFBdata.

     
    more » « less
  4. Abstract

    We investigate the parton distribution function (PDF) uncertainty in the measurement of the effective weak mixing angleat the CERN Large Hadron Collider (LHC). The PDF-induced uncertainty is large in proton-proton collisions at the LHC due to the dilution effect. The measurement of the Drell-Yan forward-backward asymmetry () at the LHC can be used to reduce the PDF uncertainty in themeasurement. However, when including the full mass range of lepton pairs in thedata analysis, the correlation between the PDF updating procedure and theextraction leads to a sizable bias in the obtainedvalue. From our studies, we find that the bias can be significantly reduced by removing Drell-Yan events with invariant mass around theZ-pole region, while most of the sensitivity in reducing the PDF uncertainty remains. Furthermore, the lepton charge asymmetry in theWboson events as a function of the rapidity of the charged leptons,, is known to be another observable which can be used to reduce the PDF uncertainty in themeasurement. The constraint fromis complementary to that from, and thus no bias affects theextraction. The studies are performed using the error PDF Updating Method Package (ePump), which is based on Hessian updating methods. In this article, the CT14HERA2 PDF set is used as an example.

     
    more » « less
  5. null (Ed.)
    A bstract Measurement of Z-boson production in p-Pb collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 8 . 16 TeV and Pb-Pb collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 5 . 02 TeV is reported. It is performed in the dimuon decay channel, through the detection of muons with pseudorapidity − 4 < η μ < − 2 . 5 and transverse momentum $$ {p}_{\mathrm{T}}^{\mu } $$ p T μ > 20 GeV/ c in the laboratory frame. The invariant yield and nuclear modification factor are measured for opposite-sign dimuons with invariant mass 60 < m μμ < 120 GeV/ c 2 and rapidity 2 . 5 < $$ {y}_{\mathrm{cms}}^{\mu \mu} $$ y cms μμ < 4. They are presented as a function of rapidity and, for the Pb-Pb collisions, of centrality as well. The results are compared with theoretical calculations, both with and without nuclear modifications to the Parton Distribution Functions (PDFs). In p-Pb collisions the center-of-mass frame is boosted with respect to the laboratory frame, and the measurements cover the backward ( − 4 . 46 < $$ {y}_{\mathrm{cms}}^{\mu \mu} $$ y cms μμ < − 2 . 96) and forward (2 . 03 < $$ {y}_{\mathrm{cms}}^{\mu \mu} $$ y cms μμ < 3 . 53) rapidity regions. For the p-Pb collisions, the results are consistent within experimental and theoretical uncertainties with calculations that include both free-nucleon and nuclear-modified PDFs. For the Pb-Pb collisions, a 3 . 4 σ deviation is seen in the integrated yield between the data and calculations based on the free-nucleon PDFs, while good agreement is found once nuclear modifications are considered. 
    more » « less