skip to main content


This content will become publicly available on April 1, 2025

Title: The photon content of the neutron
In this work, we complete our CT18qed study with the neutron’s photon parton distribution function (PDF), which is essential for the nucleus scattering phenomenology. Two methods, CT18lux and CT18qed, based on the LUXqed formalism and the DGLAP evolution, respectively, to determine the neutron’s photon PDF have been presented. Various low-Q2non-perturbative variations have been carefully examined, which are treated as additional uncertainties on top of those induced by quark and gluon PDFs. The impacts of the momentum sum rule as well as isospin symmetry violation have been explored and turned out to be negligible. A detailed comparison with other neutron’s photon PDF sets has been performed, which shows a great improvement in the precision and a reasonable uncertainty estimation. Finally, two phenomenological implications are demonstrated with photon-initiated processes: neutrino-nucleusW-boson production, which is important for the near-future TeV–PeV neutrino observations, and the axion-like particle production at a high-energy muon beam-dump experiment.  more » « less
Award ID(s):
2112829
PAR ID:
10543802
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Publisher / Repository:
SISSA/Springer Science
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
4
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We explore neutrino emission from nonrotating, single-star models across six initial metallicities and 70 initial masses from the zero-age main sequence to the final fate. Overall, across the mass spectrum, we find metal-poor stellar models tend to have denser, hotter, and more massive cores with lower envelope opacities, larger surface luminosities, and larger effective temperatures than their metal-rich counterparts. Across the mass–metallicity plane we identify the sequence (initial CNO →14N →22Ne →25Mg →26Al →26Mg →30P →30Si) as making primary contributions to the neutrino luminosity at different phases of evolution. For the low-mass models we find neutrino emission from the nitrogen flash and thermal pulse phases of evolution depend strongly on the initial metallicity. For the high-mass models, neutrino emission at He-core ignition and He-shell burning depends strongly on the initial metallicity. Antineutrino emission during C, Ne, and O burning shows a strong metallicity dependence with22Ne(α,n)25Mg providing much of the neutron excess available for inverse-βdecays. We integrate the stellar tracks over an initial mass function and time to investigate the neutrino emission from a simple stellar population. We find average neutrino emission from simple stellar populations to be 0.5–1.2 MeV electron neutrinos. Lower metallicity stellar populations produce slightly larger neutrino luminosities and averageβdecay energies. This study can provide targets for neutrino detectors from individual stars and stellar populations. We provide convenient fitting formulae and open access to the photon and neutrino tracks for more sophisticated population synthesis models.

     
    more » « less
  2. Abstract

    Kiloparsec-scale triple active galactic nuclei (AGNs), potential precursors of gravitationally bound triple massive black holes (MBHs), are rarely seen objects and believed to play an important role in the evolution of MBHs and their host galaxies. In this work we present a multiband (3.0, 6.0, 10.0, and 15.0 GHz), high-resolution radio imaging of the triple AGN candidate, SDSS J0849+1114, using the Very Large Array. Two of the three nuclei (A and C) are detected at 3.0, 6.0, and 15 GHz for the first time, both exhibiting a steep spectrum over 3–15 GHz (with a spectral index −0.90 ± 0.05 and −1.03 ± 0.04) consistent with a synchrotron origin. Nucleus A, the strongest nucleus among the three, shows a double-sided jet, with the jet orientation changing by ∼20° between its inner 1″ and the outer 5.″5 (8.1 kpc) components, which may be explained as the MBH’s angular momentum having been altered by merger-enhanced accretion. Nucleus C also shows a two-sided jet, with the western jet inflating into a radio lobe with an extent of 1.″5 (2.2 kpc). The internal energy of the radio lobe is estimated to be 5.0 × 1055erg, for an equipartition magnetic field strength of ∼160μG. No significant radio emission is detected at all four frequencies for nucleus B, yielding an upper limit of 15, 15, 15, and 18μJy beam−1at 3.0, 6.0, 10.0, and 15.0 GHz, based on which we constrain the star formation rate in nucleus B to be ≲0.4Myr−1.

     
    more » « less
  3. Abstract

    This report summarizes the latest developments in the CTEQ-TEA global analysis of parton distribution functions (PDFs) in the nucleon. The focus is on recent NNLO fits to high-precision LHC data at 8 and 13 TeV, including Drell–Yan, jet, and top-quark pair production, pursued on the way toward the release of the new generation of CTEQ-TEA general-purpose PDFs. The report also discusses advancements in statistical and numerical methods for PDF determination and uncertainty quantification, highlighting the importance of robust and replicable uncertainties for high-stakes observables. Additionally, it covers phenomenological studies related to PDF determination, such as the interplay of experimental constraints, exploration of correlations between high-xnucleon sea and low-energy parity-violating measurements, fitted charm in the nucleon, the photon PDF in the neutron, and simultaneous SMEFT-PDF analyses.

     
    more » « less
  4. Abstract

    In this Letter we investigate the dependency with scale of the empirical probability distribution functions (PDF) of Elsasser increments using large sets ofWINDdata (collected between 1995 and 2017) near 1 au. The empirical PDF are compared to the ones obtained from high-resolution numerical simulations of steadily driven, homogeneous reduced MHD turbulence on a 20483rectangular mesh. A large statistical sample of Alfvénic increments is obtained by using conditional analysis based on the solar wind average properties. The PDF tails obtained from observations and numerical simulations are found to have exponential behavior in the inertial range, with an exponential decrement that satisfies power laws of the formαllμ, wherelis the scale size, withμbetween 0.17 and 0.25 for observations and 0.43 for simulations. PDF tails were extrapolated assuming their exponential behavior extends to arbitrarily large increments in order to determine structure function scaling laws at very high orders. Our results point to potentially universal scaling laws governing the PDF of Elsasser increments and to an alternative approach to investigate high-order statistics in solar wind observations.

     
    more » « less
  5. Context.Theγprocess in core-collapse supernovae (CCSNe) can produce a number of neutron-deficient stable isotopes heavier than iron (pnuclei). However, current model predictions do not fully reproduce solar abundances, especially for92, 94Mo and96, 98Ru.

    Aims.We investigate the impact of different explosion energies and parametrizations on the nucleosynthesis ofpnuclei, by studying stellar models with different initial masses and different CCSN explosions.

    Methods.We compared thep-nucleus yields obtained using a semi-analytical method to simulate the supernova to those obtained using hydrodynamic models. We explored the effect of varying the explosion parameters on thep-nucleus production in two sets of CCSN models with initial masses of 15, 20, and 25Mat solar metallicity. We calculated a new set of 24 CCSN models (eight for each stellar progenitor mass) and compared our results with another recently published set of 80 CCSN models that includes a wide range of explosion parameters: explosion energy or initial shock velocity, energy injection time, and mass location of the injection.

    Results.We find that the totalp-nucleus yields are only marginally affected by the CCSN explosion prescriptions if theγ-process production is already efficient in the stellar progenitors due to a C−O shell merger. In most CCSN explosions from progenitors without a C−O shell merger, theγ-process yields increase with the explosion energy by up to an order of magnitude, depending on the progenitor structure and the CCSN prescriptions. The general trend of thep-nucleus production with the explosion energy is more complicated if we look at the production of singlepnuclei. The lightp-nuclei tend to be the most enhanced with increasing explosion energy. In particular, for the CCSN models where theα-rich freeze-out component is ejected, the yields of the lightestpnuclei (including92, 94Mo and96Ru) increase by up to three orders of magnitude.

    Conclusions.We provide the first extensive study using different sets of massive stars of the impact of varying CCSN explosion prescriptions on the production ofpnuclei. Unlike previous expectations and recent results in the literature, we find that the average production ofpnuclei tends to increase with the explosion energy. We also confirm that the pre-explosion production ofpnuclei in C−O shell mergers is a robust result, independent of the subsequent explosive nucleosynthesis. More generally, a realistic range of variations in the evolution of stellar progenitors and in the CCSN explosions might boost the CCSN contribution to the galactic chemical evolution ofpnuclei.

     
    more » « less