skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pyrogallate‐Based Metal‐Organic Framework with a Two‐Dimensional Secondary Building Unit
Abstract We report a metal–organic framework (MOF) with a rare two‐dimensional (2D) secondary building unit (SBU). The SBU comprises mixed‐valent Fe2+and Fe3+metal ions bridged by oxygen atoms pertaining to the polytopic ligand 3,3′,4,4′,5,5′‐hexahydroxybiphenyl, which also define the iron‐oxide 2D layers. Overall, the anionic framework exhibits rare topology and evidences strong electronic communication between the mixed‐valence iron sites. These results highlight the importance of dimensionality control of MOF SBUs for discovering new topologies in reticular chemistry, and especially for improving electronic communication within the MOF skeleton.  more » « less
Award ID(s):
2105495
PAR ID:
10382546
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
49
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Metal–organic frameworks (MOFs) with mobile charges have attracted significant attention due to their potential applications in photoelectric devices, chemical resistance sensors, and catalysis. However, fundamental understanding of the charge transport pathway within the framework and the key properties that determine the performance of conductive MOFs in photoelectric devices remain underexplored. Herein, we report the mechanisms of photoinduced charge transport and electron dynamics in the conductive 2D M−HHTP (M=Cu, Zn or Cu/Zn mixed; HHTP=2,3,6,7,10,11‐hexahydroxytriphenylene) MOFs and their correlation with photoconductivity using the combination of time‐resolved terahertz spectroscopy, optical transient absorption spectroscopy, X‐ray transient absorption spectroscopy, and density functional theory (DFT) calculations. We identify the through‐space hole transport mechanism through the interlayer sheet π–π interaction, where photoinduced hole state resides in HHTP ligand and electronic state is localized at the metal center. Moreover, the photoconductivity of the Cu−HHTP MOF is found to be 65.5 S m−1, which represents the record high photoconductivity for porous MOF materials based on catecholate ligands. 
    more » « less
  2. An ionic metal–organic-framework (MOF) containing nanoscale channels was readily assembled from ditopic 4′-pyridyl-2,2′:6′,2′′-terpyridine (pytpy) and a simple iron( ii ) salt. X-ray structural analysis revealed a two-dimensional grid-like framework assembled by classic octahedral (pytpy) 2 Fe II cations as linkers (with pytpy as a new ditopic pyridyl ligand) and octa-coordinate FeCl 2 centers as nodes. The layer-by-layer assembly of the 2-D framework resulted in the formation of 3-D porous materials consisting of nano-scale channels. The charges of the cationic framework were balanced with anionic Cl 3 FeOFeCl 3 in its void channels. The new Fe-based MOF material was employed as a precatalyst for syn -selective hydroboration of alkynes under mild, solvent-free conditions in the presence of an activator, leading to the synthesis of a range of trans -alkenylboronates in good yields. The larger scale applicability and recyclability of the new MOF catalyst was further explored. This represents a rare example of an ionic MOF material that can be utilized in hydroboration catalysis. 
    more » « less
  3. Abstract A number of technologies would benefit from developing inorganic compounds and materials with specific electronic and magnetic exchange properties. Unfortunately, designing compounds with these properties is difficult because metal⋅⋅⋅metal coupling schemes are hard to predict and control. Fully characterizing communication between metals in existing compounds that exhibit interesting properties could provide valuable insight and advance those predictive capabilities. One such class of molecules are the series of Lindqvist iron‐functionalized and hexavanadium polyoxovanadate‐alkoxide clusters, which we characterized here using V K‐edge X‐ray absorption spectroscopy. Substantial changes in the pre‐edge peak intensities were observed that tracked with the V 3d‐electron count. The data also suggested substantial delocalization between the vanadium cations. Meanwhile, the FeIIIcations were electronically isolated from the polyoxovanadate core. 
    more » « less
  4. Abstract Haldane topological materials contain unique antiferromagnetic chains with symmetry-protected energy gaps. Such materials have potential applications in spintronics and future quantum computers. Haldane topological solids typically consist of spin-1 chains embedded in extended three-dimensional (3D) crystal structures. Here, we demonstrate that [Ni(μ−4,4′-bipyridine)(μ-oxalate)]n(NiBO) instead adopts a two-dimensional (2D) metal-organic framework (MOF) structure of Ni2+spin-1 chains weakly linked by 4,4′-bipyridine. NiBO exhibits Haldane topological properties with a gap between the singlet ground state and the triplet excited state. The latter is split by weak axial and rhombic anisotropies. Several experimental probes, including single-crystal X-ray diffraction, variable-temperature powder neutron diffraction (VT-PND), VT inelastic neutron scattering (VT-INS), DC susceptibility and specific heat measurements, high-field electron spin resonance, and unbiased quantum Monte Carlo simulations, provide a detailed, comprehensive characterization of NiBO. Vibrational (also known as phonon) properties of NiBO have been probed by INS and density-functional theory (DFT) calculations, indicating the absence of phonons near magnetic excitations in NiBO, suppressing spin-phonon coupling. The work here demonstrates that NiBO is indeed a rare 2D-MOF Haldane topological material. 
    more » « less
  5. This study explores the nature, dynamics, and reactivity of the photo-induced charge separated excited state in a Fe3+-doped titanium-based metal organic framework (MOF), xFeMIL125-NH2, as a function of iron concentration. The MOF is synthesized with doping levels x = 0.5, 1 and 2 Fe node sites per octameric Ti-oxo cluster and characterized by powder x-ray diffraction, UV-vis diffuse reflectance, atomic absorption, and steady state Fe K-edge X-ray absorption spectroscopy. For each doping level, time-resolved X-ray transient absorption spectroscopy studies confirm the electron trap site role of the Fe sites in the excited state. Time scan data reveal multiexponential decay kinetics for the charge recombination processes which extend into the microsecond range for all three concentrations. A series of dye photodegradation studies, based on the oxidative decomposition of Rhodamine B, demonstrates the reactivity of the charge separated excited state and the photocatalytic capacity of these MOF materials compared to traditional heterometal-doped semiconductor photocatalysts. 
    more » « less