A ditopic nitrogen ligand (E)-N′-(pyridin-4-ylmethylene)isonicotinohydrazide (L) containing both divergent pyridyl coordination sites and a hydrogen-bonding hydrazide–hydrazone moiety was synthesized. The Co(NCS)2-mediated self-assembly of L has resulted in the synthesis of a novel 3-dimensional (3D) supramolecular framework (1) that features both coordination and hydrogen bonding interactions. X-ray structural analysis reveals the formation and coordination mode of 1 in the solid state. The rational utilization of coordination bonds and hydrogen bonding interactions is confirmed and responsible for constructing the 3D materials. Catalytic studies using 1 in the presence of an activator are performed for the hydroboration and hydrosilylation reactions of ketones and aldehydes, and the results are compared with previously reported cobalt-based polymeric catalysts.
more »
« less
An ionic Fe-based metal–organic-framework with 4′-pyridyl-2,2′:6′,2′′-terpyridine for catalytic hydroboration of alkynes
An ionic metal–organic-framework (MOF) containing nanoscale channels was readily assembled from ditopic 4′-pyridyl-2,2′:6′,2′′-terpyridine (pytpy) and a simple iron( ii ) salt. X-ray structural analysis revealed a two-dimensional grid-like framework assembled by classic octahedral (pytpy) 2 Fe II cations as linkers (with pytpy as a new ditopic pyridyl ligand) and octa-coordinate FeCl 2 centers as nodes. The layer-by-layer assembly of the 2-D framework resulted in the formation of 3-D porous materials consisting of nano-scale channels. The charges of the cationic framework were balanced with anionic Cl 3 FeOFeCl 3 in its void channels. The new Fe-based MOF material was employed as a precatalyst for syn -selective hydroboration of alkynes under mild, solvent-free conditions in the presence of an activator, leading to the synthesis of a range of trans -alkenylboronates in good yields. The larger scale applicability and recyclability of the new MOF catalyst was further explored. This represents a rare example of an ionic MOF material that can be utilized in hydroboration catalysis.
more »
« less
- Award ID(s):
- 1900500
- PAR ID:
- 10403788
- Date Published:
- Journal Name:
- RSC Advances
- Volume:
- 13
- Issue:
- 4
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 2225 to 2232
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Metal-organic frameworks (MOF) are an emerging class of microporous materials with promising applications. MOF nanocrystals, and their assembled super-structures, can display unique properties and reactivities when compared with their bulk analogues. MOF nanostructures of 0-D, 2-D, and 3-D dimensions can be routinely obtained by controlling reaction conditions and ligand additives, while formation of 1-D MOF nanocrystals (nanowires and nanorods) and super-structures has been relatively rare. We report here a facile templated interfacial synthesis methodology for the preparation of a series of 1-D MOF nano- and micro-structures with precisely controlled shapes and sizes. Specifically, by applying track-etched polycarbonate (PCTE) membranes as the templates and at the oil/water interface, we rapidly and reproducibly synthesize zeolitic imidazolate framework-8 (ZIF-8) and ZIF-67 nano- and micro structures of sizes ranging from 10 nm to 20 μm. We also identify a size confinement effect on MOF crystal growth, which leads to single crystals under the most restricted conditions and inter-grown polycrystals at larger template pore sizes, as well as surface directing effects that influence the crystallographic preferred orientation. Our findings provide a potentially generalizable method for controlling the size, morphology, and crystal orientations of MOF nanomaterials, as well as offering fundamental understanding into MOF crystal growth mechanisms.more » « less
-
MOF NU-1000 was employed to host Ni tripodal complexes prepared from new organometallic precursors [HNi(κ4(E,P,P,P)-E(o-C 6 H 4 CH 2 PPh 2 ) 3 ], E = Si (Ni-1), Ge (Ni-2). The new heterogenous catalytic materials, Ni-1@NU-1000 and Ni-2@NU-1000 show the advantages of both homogenous and heterogeneous catalysts. They catalyze the hydroboration of aldehydes and ketones more efficiently than the homogenous Ni-1 and Ni-2, under aerobic conditions, and allowing recyclability of the catalyst.more » « less
-
Pillared paddle-wheel-based metal-organic framework (MOF) materials are an attractive target as they offer a reliable method for constructing well-defined, multifunctional materials. A drawback of these materials, which has limited their application, is their tendency to form catenated frameworks with little accessible volume. To eliminate this disadvantage, it is necessary to investigate strategies for constructing non-catenated pillared paddle-wheel MOFs. Hydrogen-bonding substituents on linkers have been postulated to prevent catenation in certain frameworks and, in this work, we present a new MOF to further bolster this theory. Using 2,2′-diamino-[1,1′-biphenyl]-4,4′-dicarboxylic acid, BPDC-(NH2)2, linkers and dipyridyl glycol, DPG, pillars, we assembled a MOF with pcu topology. The new material is non-catenated, exhibiting large accessible pores and low density. To the best of our knowledge, this material constitutes the pcu framework with the largest pore volume and lowest density. We attribute the lack of catenation to the presence of H-bonding substituents on both linkers.more » « less
An official website of the United States government

