Drought has a significant, negative impact on crop production; and these effects are poised to increase with climate change. Plants acclimate to drought and water stress through diverse physiological responses, primarily mediated by the hormone abscisic acid (ABA). Because plants lose the majority of their water through stomatal pores on aerial surfaces of plants, stomatal closure is one of the rapid responses mediated by ABA to reduce transpirational water loss. The dynamic changes in the transcriptome of stomatal guard cells in response to ABA have been investigated in the model plant
The karrikin (KAR) receptor and several related signaling components have been identified by forward genetic screening, but only a few studies have reported on upstream and downstream KAR signaling components and their roles in drought tolerance. Here, we characterized the functions of KAR UPREGULATED F-BOX 1 (KUF1) in drought tolerance using a reverse genetics approach in Arabidopsis (Arabidopsis thaliana). We observed that kuf1 mutant plants were more tolerant to drought stress than wild-type (WT) plants. To clarify the mechanisms by which KUF1 negatively regulates drought tolerance, we performed physiological, transcriptome, and morphological analyses. We found that kuf1 plants limited leaf water loss by reducing stomatal aperture and cuticular permeability. In addition, kuf1 plants showed increased sensitivity of stomatal closure, seed germination, primary root growth, and leaf senescence to abscisic acid (ABA). Genome-wide transcriptome comparisons of kuf1 and WT rosette leaves before and after dehydration showed that the differences in various drought tolerance-related traits were accompanied by differences in the expression of genes associated with stomatal closure (e.g. OPEN STOMATA 1), lipid and fatty acid metabolism (e.g. WAX ESTER SYNTHASE), and ABA responsiveness (e.g. ABA-RESPONSIVE ELEMENT 3). The kuf1 mutant plants had higher root/shoot ratios and root hair densities than WT plants, suggesting that they could absorb more water than WT plants. Together, these results demonstrate that KUF1 negatively regulates drought tolerance by modulating various physiological traits, morphological adjustments, and ABA responses and that the genetic manipulation of KUF1 in crops is a potential means of enhancing their drought tolerance.
more » « less- Award ID(s):
- 1856741
- PAR ID:
- 10382555
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Plant Physiology
- Volume:
- 190
- Issue:
- 4
- ISSN:
- 0032-0889
- Page Range / eLocation ID:
- p. 2671-2687
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Arabidopsis thaliana . However, guard cell transcriptomes have not been analyzed in agronomically valuable crops such as a major oilseed crop, rapeseed. In this study, we investigated the dynamics of ABA-regulated transcriptomes in stomatal guard cells ofBrassica napus and conducted comparison analysis with the transcriptomes ofA. thaliana . We discovered changes in gene expression indicating alterations in a host of physiological processes, including stomatal movement, metabolic reprogramming, and light responses. Our results suggest the existence of both immediate and delayed responses to ABA in Brassica guard cells. Furthermore, the transcription factors and regulatory networks mediating these responses are compared to those identified in Arabidopsis. Our results imply the continuing evolution of ABA responses in Brassica since its divergence from a common ancestor, involving both protein-coding and non-coding nucleotide sequences. Together, our results will provide a basis for developing strategies for molecular manipulation of drought tolerance in crop plants. -
Stomatal closure limits transpiration during drought, restricting water potential decline and delaying the onset of embolism. While critical for ensuring survival during drought, the mechanisms driving stomatal closure during drought remain equivocal. The hormone abscisic acid (ABA) will close stomata in seed plants and is synthesized as leaf turgor declines. ABA driven stomatal closure during drought is particularly apparent in species that are more isohydric. In contrast, in species that have a more anisohydric response to drought, like Fagus sylvatica, the importance of ABA in driving stomatal closure during drought is often overlooked or excluded, in place of a hypothesized passive, water potential driven stomatal closure. Here we investigated whether ABA drives stomata closure during a mid-summer drought in field grown F. sylvatica. We found that as leaf water potential declines during a drought, foliage abscisic acid (ABA) levels increase considerably and stomata close. ABA levels in leaves increase as water potentials decline to within 0.3 MPa of turgor loss point, when stomata close. Foliage ABA levels correlate with stomatal conductance throughout a drought and post-drought period. From these results we argue that it is hard to exclude increased ABA levels driving stomatal closure during drought in the anisohydric species F. sylvatica.more » « less
-
Abstract Drought stress poses a substantial challenge to plant growth and agricultural productivity worldwide. Upon water depletion, plants activate an abscisic acid (ABA) signaling pathway, leading to stomatal closure to reduce water loss. The MYB family of transcription factors plays diverse roles in growth, development, stress responses, and biosynthesis, yet their involvement in stomatal regulation remains unclear. Here, we demonstrate that ABA significantly upregulates the expression of MYB41, MYB74, and MYB102, with MYB41 serving as a key regulator that induces the expression of both MYB74 and MYB102. Through luciferase assays, chromatin immunoprecipitation (ChIP) assays, and electrophoretic mobility shift assays (EMSA), we reveal that MYB41 engages in positive feedback regulation by binding to its own promoter, thus amplifying its transcription in Arabidopsis (Arabidopsis thaliana). Furthermore, our investigation showed that MYB41 recruits BRAHMA (BRM), the core ATPase subunit of the SWI/SNF complex, to the MYB41 promoter, facilitating the binding of HISTONE DEACETYLASE 6 (HDA6). This recruitment triggers epigenetic modifications, resulting in reduced MYB41 expression characterized by elevated H3K27me3 levels and concurrent decreases in H3ac, H3K27ac, and H3K14ac levels in wild-type plants compared to brm knockout mutant plants. Our genetic and molecular analyses show that ABA mediates autoregulation of the MYB41-BRM module, which intricately modulates stomatal movement in A. thaliana. This discovery sheds light on a drought response mechanism with the potential to greatly enhance agricultural productivity.
-
Abscisic acid acts essentially on stomata, not on the xylem, to improve drought resistance in tomato
Abstract Drought resistance is essential for plant production under water‐limiting environments. Abscisic acid (ABA) plays a critical role in stomata but its impact on hydraulic function beyond the stomata is far less studied. We selected genotypes differing in their ability to accumulate ABA to investigate its role in drought‐induced dysfunction. All genotypes exhibited similar leaf and stem embolism resistance regardless of differences in ABA levels. Their leaf hydraulic resistance was also similar. Differences were only observed between the two extreme genotypes:
sitiens (sit ; a strong ABA‐deficient mutant) andsp12 (a transgenic line that constitutively overaccumulates ABA), where the water potential inducing 50% embolism was 0.25 MPa lower insp12 than insit . Maximum stomatal and minimum leaf conductances were considerably lower in plants with higher ABA (wild type [WT] andsp12 ) than in ABA‐deficient mutants. Variations in gas exchange across genotypes were associated with ABA levels and differences in stomatal density and size. The lower water loss in plants with higher ABA meant that lethal water potentials associated with embolism occurred later during drought insp12 plants, followed by WT, and then by the ABA‐deficient mutants. Therefore, the primary pathway by which ABA enhances drought resistance is via declines in water loss, which delays dehydration and hydraulic dysfunction. -
SUMMARY Jasmonic acid (JA) and salicylic acid (SA) regulate stomatal closure, preventing pathogen invasion into plants. However, to what extent abscisic acid (ABA), SA and JA interact, and what the roles of SA and JA are in stomatal responses to environmental cues, remains unclear. Here, by using intact plant gas‐exchange measurements in JA and SA single and double mutants, we show that stomatal responsiveness to CO2, light intensity, ABA, high vapor pressure deficit and ozone either did not or, for some stimuli only, very slightly depended upon JA and SA biosynthesis and signaling mutants, including
dde2, sid2, coi1 ,jai1 ,myc2 andnpr1 alleles. Although the stomata in the mutants studied clearly responded to ABA, CO2, light and ozone, ABA‐triggered stomatal closure innpr1‐1 was slightly accelerated compared with the wild type. Stomatal reopening after ozone pulses was quicker in thecoi1‐16 mutant than in the wild type. In intact Arabidopsis plants, spraying with methyl‐JA led to only a modest reduction in stomatal conductance 80 min after treatment, whereas ABA and CO2induced pronounced stomatal closure within minutes. We could not document a reduction of stomatal conductance after spraying with SA. Coronatine‐induced stomatal opening was initiated slowly after 1.5–2.0 h, and reached a maximum by 3 h after spraying intact plants. Our results suggest that ABA, CO2and light are major regulators of rapid guard cell signaling, whereas JA and SA could play only minor roles in the whole‐plant stomatal response to environmental cues in Arabidopsis andSolanum lycopersicum (tomato).