skip to main content


Title: Undergraduate Student Experience in a Multidisciplinary Architecture-Civil Engineering Research Project
This paper examines the learning experiences of undergraduate students who conducted research as part of a multidisciplinary team. The research project involved five undergraduate students with different backgrounds in engineering as well as in arts and sciences, supervised by four architecture and civil engineering faculty and their three PhD students. The research investigates the behavior of new Tessellated Structural-Architectural (TeSA) systems made of repetitive patterns of tiles (tessellations) that are both aesthetically appealing and load bearing. The undergraduate students worked on three tasks: (1) studying the behavior of TeSA shear walls using small scale earthquake simulator tests, (2) studying the shear capacity of reinforced concrete TeSA tiles, and (3) studying the effect of different shapes and interlocking patterns on the performance of small scale TeSA beams. The undergraduate students used hands-on experiments and laboratory testing to study the performance of 3D printed or prefabricated interlocking tessellations. This paper discusses the technical skills, fundamental concepts, and power skills (communicating, writing, presenting, etc.) that the students obtained, as well as the challenges that they encountered. The students found the process of developing and executing hands-on experiments and analyzing experimental results effective for learning new technologies and fundamental concepts. These concepts included 3D printing methods, natural frequency of a structure, and structural response subjected to a shear force. Peer learning, collaboration between students with different backgrounds, and group discussions with all the team members facilitated a deeper understanding and broader perspective on design, performance, and construction of TeSA systems. The project took place during the COVID-19 pandemic, and the students found working and meeting remotely challenging at times. Proper guidance and timely feedback by the project investigators and their PhD students helped with resolving the challenges.  more » « less
Award ID(s):
1762899
NSF-PAR ID:
10382589
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2022 American Society for Engineering Education (ASEE) Southeastern Section Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This NSF IUSE project is on the Exploration and Design Tier and the Engaged Student Learning Track. It is aimed at better preparing the country’s professional workforce in the renaissance of U.S. skilled manufacturing by creating new personnel proficient in additive manufacturing (AM). AM is mainstream; it has the potential to bring jobs back to the U.S. and add to the nation’s global competitiveness. AM is the process of joining materials to make objects from 3D data in a layer upon layer fashion. The objectives are to develop, assess, revise, and disseminate an upper division course and laboratory, “Additive Manufacturing,” and to advance undergraduate and K-12 student research and creative inquiry activities as well as faculty expertise at three diverse participating universities: Texas Tech, California State-Northridge, and Kansas State. This research/pedagogical team contains a mechanical engineering professor at each university to develop and teach the course, as well as a sociologist trained in K-12 outreach, course assessment, and human subjects research to accurately determine the effects on K-12 and undergraduate students. The proposed course will cover extrusion-based, liquid-based, and powder-based AM processes. For each technology, fundamentals, applications, and advances will be discussed. Students will learn solutions to AM of polymers, metals, and ceramics. Two lab projects will be built to provide hands-on experiences on a variety of state-of-the-art 3D printers. To stimulate innovation, students will design, fabricate, and measure test parts, and will perform experiments to explore process limits and tackle real world problems. They will also engage K-12 students through video demonstrations and mentorship, thus developing presentation skills. Through the project, different pedagogical techniques and assessment tools will be utilized to assess and improve engineering education at both the undergraduate and K-12 levels through varied techniques: i) undergraduate module lesson plans that are scalable to K-12 levels, ii) short informational video lessons created by undergraduates for K-12 students with accompanying in-person mentorship activities at local high schools and MakerSpaces, iii) pre- and post-test assessments of undergraduates’ and K-12 participating students’ AM knowledge, skills, and perceptions of self-efficacy, and iv) focus groups to learn about student concerns/learning challenges. We will also track students institutionally and into their early careers to learn about their use of AM technology professionally. 
    more » « less
  2. This NSF IUSE project is on the Exploration and Design Tier and the Engaged Student Learning Track. It is aimed at better preparing the country’s professional workforce in the renaissance of U.S. skilled manufacturing by creating new personnel proficient in additive manufacturing (AM). AM is mainstream; it has the potential to bring jobs back to the U.S. and add to the nation’s global competitiveness. AM is the process of joining materials to make objects from 3D data in a layer upon layer fashion. The objectives are to develop, assess, revise, and disseminate an upper division course and laboratory, “Additive Manufacturing,” and to advance undergraduate and K-12 student research and creative inquiry activities as well as faculty expertise at three diverse participating universities: Texas Tech, California State Northridge, and Kansas State. This research/pedagogical team contains a mechanical engineering professor at each university to develop and teach the course, as well as a sociologist trained in K-12 outreach, course assessment, and human subjects research to accurately determine the effects on K-12 and undergraduate students. The proposed course will cover extrusion-based, liquid-based, and powder-based AM processes. For each technology, fundamentals, applications, and advances will be discussed. Students will learn solutions to AM of polymers, metals, and ceramics. Two lab projects will be built to provide hands-on experiences on a variety of state-of-the-art 3D printers. To stimulate innovation, students will design, fabricate, and measure test parts, and will perform experiments to explore process limits and tackle real world problems. They will also engage K-12 students through video demonstrations and mentorship, thus developing presentation skills. Through the project, different pedagogical techniques and assessment tools will be utilized to assess and improve engineering education at both the undergraduate and K-12 levels through varied techniques: i) undergraduate module lesson plans that are scalable to K-12 levels, ii) short informational video lessons created by undergraduates for K-12 students with accompanying in-person mentorship activities at local high schools and MakerSpaces, iii) pre- and post-test assessments of undergraduates’ and K-12 participating students’ AM knowledge, skills, and perceptions of self-efficacy, and iv) focus groups to learn about student concerns/learning challenges. We will also track students institutionally and into their early careers to learn about their use of AM technology professionally. 
    more » « less
  3. null (Ed.)
    Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to as the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow faculty to better engage students at the beginning of their studies and help them understand how future courses contribute to the overall learning outcomes of a degree in civil engineering. The Springer course sequence is team-taught by faculty from both civil engineering and communication, and exposes students to all of the civil engineering subdisciplines. Through a project-based learning approach, Springer courses mimic capstone in that students work on a practical application of civil engineering concepts throughout the semester in a way that challenges students to incorporate tools that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first of the Springer courses (Springer 1; n=11) introduced students to three civil engineering subdisciplines: construction management, hydrology, and transportation. The remaining subdisciplines will be covered in a follow-on Springer 2 pilot.. The project for Springer 1 involved designing a small parking lot for a church located adjacent to campus. Following initial instruction in civil engineering topics related to the project, students worked in teams to develop conceptual project designs. A design charrette allowed students to interact with different stakeholders to assess their conceptual designs and incorporate stakeholder input into their final designs. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. An overview of the Springer 2 course is also provided. The feedback from the SALG indicated positive attitudes towards course activities and content, and that students found interaction with project stakeholders during the design charrette especially beneficial. Challenges for full scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less
  4. Biologically inspired design has become increasingly common in graduate and undergraduate engineering programs, consistent with an expanding emphasis by professional engineering societies on cross-disciplinary critical thinking skills and adaptive and sustainable design. However, bio-inspired engineering is less common in K-12 education. In 2019, the NSF funded a K-12 project entitled Biologically Inspired Design for Engineering Education (BIRDEE), to create socially relevant, accessible, and highly contextualized high school engineering curricula focusing on bio-inspired design. Studies have shown that women and underrepresented minorities are drawn to curricula, courses, and instructional strategies that are integrated, emphasize systems thinking, and facilitate connection building across courses or disciplines. The BIRDEE project also seeks to interest high school girls in engineering by providing curricula that incorporate humanistic, bio-inspired engineering with a focus on sustainable and authentic design contexts. BIRDEE curricula integrate bio-inspired design into the engineering design process by leveraging design tools that facilitate the application of biological concepts to design challenges. This provides a conceptual framework enabling students to systematically define a design problem, resulting in better, more well-rounded problem specifications. The professional development (PD) for the participating teachers include six-week-long summer internships in university research laboratories focused on biology and bio-inspired design. The goal of these internships is to improve engineering teachers’ knowledge of bio-inspired design by partnering with cutting-edge engineers and scientists to study animal features and behaviors and their applications to engineering design. However, due to COVID-19 and research lab closures in the summer of 2020, the research team had to transfer the summer PD experience to an online setting. An asynchronous, quasi-facilitated online course was developed and delivered to teachers over six weeks. In this paper, we will discuss online pedagogical approaches to experiential learning, teaching bio-inspired design concepts, and the integration of these approaches in the engineering design process. Central to the online PD design and function of each course was the use of inquiry, experiential and highly-collaborative learning strategies. Preliminary results show that teachers appreciated the aspects of the summer PD that included exploration, such as during the “Found Object” activity, and the process of building a prototype. These activities represented experiential learning opportunities where teachers were able to learn by doing. It was noted throughout the focus group discussions that such opportunities were appreciated by participating teachers. Teachers indicated that the experiential learning components of the PD allowed them to do something outside of their comfort zone, inspired them to do research that they would not have done outside of this experience, and allowed them to “be in the student's seat and get hands-on application”. By participating in these experiential learning opportunities, teachers were also able to better understand how the BIRDEE curriculum may impact students’ learning in their classrooms 
    more » « less
  5. This paper describes the fabrication and assembly of tessellated precast reinforced concrete shear walls. These walls are being constructed and tested as part of an NSF-funded research project designed to demonstrate the concept of Tessellated Structural-Architectural (TeSA) systems. The over-arching goal of this research is to explore tessellation patterns that can be implemented on a large scale, are architecturally appealing, and provide structural function. TeSA systems are comprised of individual tiles arranged in tessellations, or repeating geometric patterns. Tiles are topologically interlocking, which means that they transfer forces due to their interlocking geometry rather than through a bonding adhesive. The benefit of such a system is the ability to localize failure and rapidly repair the individual damaged tiles, rather than the entire system. The specimen discussed in this paper is a precast concrete shear wall constructed from individually cast I-shaped tiles. Shear wall tests are forthcoming; this paper focuses instead on documenting technical solutions to difficulties faced during design, fabrication, and assembly of the test specimen. This paper is intended to provide lessons learned to others who are designing and building TeSA walls and thereby facilitate the benefits of these novel systems. 
    more » « less