skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Assessment to Investigate Student Conceptions of Pedigree Analysis
Genetics plays an increasing role in modern life as evidenced by the development of revolutionary techniques such as CRISPR-based genome editing and the rise of personalized genome services. However, genetics is difficult to learn; known issues include its abstract nature, different scales, and technical language. Pedigree analysis is a convergence of these concepts, requiring use of multiple symbolic scales and understanding the relationships and nature of alleles, genes, and chromosomes. To measure student understanding of these concepts, as well as support biology educational reform toward student-centered instruction, we developed a formative assessment to provide reliable and valid evidence of student understanding, learning, and misconceptions for pedigree analysis. Nine multiple choice items targeted to four learning objectives were developed in an iterative process with faculty and student input. We designed distractor answers to capture common student misconceptions and deployed a novel statistical technique to assess the congruence of distractor language with targeted misconceptions. Psychometric analysis showed the instrument provides valid and reliable data and has utility to measure normalized learning gains. Finally, we employed cross-tabulation and distractor progression to identify several stable misconceptions that can be targeted for instructional intervention.  more » « less
Award ID(s):
1710262
PAR ID:
10382655
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The American Biology Teacher
Volume:
84
Issue:
9
ISSN:
0002-7685
Page Range / eLocation ID:
535 to 544
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In teaching mechanics, we use multiple representations of vectors to develop concepts and analysis techniques. These representations include pictorials, diagrams, symbols, numbers and narrative language. Through years of study as students, researchers, and teachers, we develop a fluency rooted in a deep conceptual understanding of what each representation communicates. Many novice learners, however, struggle to gain such understanding and rely on superficial mimicry of the problem solving procedures we demonstrate in examples. The term representational competence refers to the ability to interpret, switch between, and use multiple representations of a concept as appropriate for learning, communication and analysis. In engineering statics, an understanding of what each vector representation communicates and how to use different representations in problem solving is important to the development of both conceptual and procedural knowledge. Science education literature identifies representational competence as a marker of true conceptual understanding. This paper presents development work for a new assessment instrument designed to measure representational competence with vectors in an engineering mechanics context. We developed the assessment over two successive terms in statics courses at a community college, a medium-sized regional university, and a large state university. We started with twelve multiple-choice questions that survey the vector representations commonly employed in statics. Each question requires the student to interpret and/or use two or more different representations of vectors and requires no calculation beyond single digit integer arithmetic. Distractor answer choices include common student mistakes and misconceptions drawn from the literature and from our teaching experience. We piloted these twelve questions as a timed section of the first exam in fall 2018 statics courses at both Whatcom Community College (WCC) and Western Washington University. Analysis of students’ unprompted use of vector representations on the open-ended problem-solving section of the same exam provides evidence of the assessment’s validity as a measurement instrument for representational competence. We found a positive correlation between students’ accurate and effective use of representations and their score on the multiple choice test. We gathered additional validity evidence by reviewing student responses on an exam wrapper reflection. We used item difficulty and item discrimination scores (point-biserial correlation) to eliminate two questions and revised the remaining questions to improve clarity and discriminatory power. We administered the revised version in two contexts: (1) again as part of the first exam in the winter 2019 Statics course at WCC, and (2) as an extra credit opportunity for statics students at Utah State University. This paper includes sample questions from the assessment to illustrate the approach. The full assessment is available to interested instructors and researchers through an online tool. 
    more » « less
  2. In teaching mechanics, we use multiple representations of vectors to develop concepts and analysis techniques. These representations include pictorials, diagrams, symbols, numbers and narrative language. Through years of study as students, researchers, and teachers, we develop a fluency rooted in a deep conceptual understanding of what each representation communicates. Many novice learners, however, struggle to gain such understanding and rely on superficial mimicry of the problem solving procedures we demonstrate in examples. The term representational competence refers to the ability to interpret, switch between, and use multiple representations of a concept as appropriate for learning, communication and analysis. In engineering statics, an understanding of what each vector representation communicates and how to use different representations in problem solving is important to the development of both conceptual and procedural knowledge. Science education literature identifies representational competence as a marker of true conceptual understanding. This paper presents development work for a new assessment instrument designed to measure representational competence with vectors in an engineering mechanics context. We developed the assessment over two successive terms in statics courses at a community college, a medium-sized regional university, and a large state university. We started with twelve multiple-choice questions that survey the vector representations commonly employed in statics. Each question requires the student to interpret and/or use two or more different representations of vectors and requires no calculation beyond single digit integer arithmetic. Distractor answer choices include common student mistakes and misconceptions drawn from the literature and from our teaching experience. We piloted these twelve questions as a timed section of the first exam in fall 2018 statics courses at both Whatcom Community College (WCC) and Western Washington University. Analysis of students’ unprompted use of vector representations on the open-ended problem-solving section of the same exam provides evidence of the assessment’s validity as a measurement instrument for representational competence. We found a positive correlation between students’ accurate and effective use of representations and their score on the multiple choice test. We gathered additional validity evidence by reviewing student responses on an exam wrapper reflection. We used item difficulty and item discrimination scores (point-biserial correlation) to eliminate two questions and revised the remaining questions to improve clarity and discriminatory power. We administered the revised version in two contexts: (1) again as part of the first exam in the winter 2019 Statics course at WCC, and (2) as an extra credit opportunity for statics students at Utah State University. This paper includes sample questions from the assessment to illustrate the approach. The full assessment is available to interested instructors and researchers through an online tool. 
    more » « less
  3. In this study we use latent class analysis, distractor analysis, and qualitative analysis of cognitive interviews of student responses to questions on an algebra concept inventory, in order to generate theories about how students’ selections of specific answer choices may reflect different stages or types of algebraic conceptual understanding. Our analysis reveals three groups of students in elementary algebra courses, which we label as “mostly random guessing”, “some procedural fluency with key misconceptions”, and “procedural fluency with emergent conceptual understanding”. Student responses also revealed high rates of misconceptions that stem from misuse or misunderstanding of procedures, and whose prevalence often correlates with higher levels of procedural fluency. 
    more » « less
  4. null; null; null; null (Ed.)
    We reflect on our ongoing journey in the educational Cybersecurity Assessment Tools (CATS) Project to create two concept inventories for cybersecurity. We identify key steps in this journey and important questions we faced. We explain the decisions we made and discuss the consequences of those decisions, highlighting what worked well and what might have gone better. The CATS Project is creating and validating two concept inventories—conceptual tests of understanding—that can be used to measure the effectiveness of various approaches to teaching and learning cybersecurity. The Cybersecurity Concept Inventory (CCI) is for students who have recently completed any first course in cybersecurity; the Cybersecurity Curriculum Assessment (CCA) is for students who have recently completed an undergraduate major or track in cybersecurity. Each assessment tool comprises 25 multiple-choice questions (MCQs) of various difficulties that target the same five core concepts, but the CCA assumes greater technical background. Key steps include defining project scope, identifying the core concepts, uncovering student misconceptions, creating scenarios, drafting question stems, developing distractor answer choices, generating educational materials, performing expert reviews, recruiting student subjects, organizing workshops, building community acceptance, forming a team and nurturing collaboration, adopting tools, and obtaining and using funding. Creating effective MCQs is difficult and time-consuming, and cybersecurity presents special challenges. Because cybersecurity issues are often subtle, where the adversarial model and details matter greatly, it is challenging to construct MCQs for which there is exactly one best but non-obvious answer. We hope that our experiences and lessons learned may help others create more effective concept inventories and assessments in STEM. 
    more » « less
  5. We reflect on our ongoing journey in the educational Cybersecurity Assessment Tools (CATS) Project to create two concept inventories for cybersecurity. We identify key steps in this journey and important questions we faced. We explain the decisions we made and discuss the consequences of those decisions, highlighting what worked well and what might have gone better. The CATS Project is creating and validating two concept inventories—conceptual tests of understanding—that can be used to measure the effectiveness of various approaches to teaching and learning cybersecurity. The Cybersecurity Concept Inventory (CCI) is for students who have recently completed any first course in cybersecurity; the Cybersecurity Curriculum Assessment (CCA) is for students who have recently completed an undergraduate major or track in cybersecurity. Each assessment tool comprises 25 multiple-choice questions (MCQs) of various difficulties that target the same five core concepts, but the CCA assumes greater technical background. Key steps include defining project scope, identifying the core concepts, uncovering student misconceptions, creating scenarios, drafting question stems, developing distractor answer choices, generating educational materials, performing expert reviews, recruiting student subjects, organizing workshops, building community acceptance, forming a team and nurturing collaboration, adopting tools, and obtaining and using funding. Creating effective MCQs is difficult and time-consuming, and cybersecurity presents special challenges. Because cybersecurity issues are often subtle, where the adversarial model and details matter greatly, it is challenging to construct MCQs for which there is exactly one best but non-obvious answer. We hope that our experiences and lessons learned may help others create more effective concept inventories and assessments in STEM. 
    more » « less