skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: OPRA: An Open-Source Online Preference Reporting and Aggregation System
We introduce the Online Preference Reporting and Aggregation (OPRA) system, an open-source online system that aims at providing support for group decision-making. We illustrate OPRA's distinctive features: UI for reporting rankings with ties, comprehensive analytics of preferences, and group decision-making in combinatorial domains. We also discuss our work in an automatic mentor matching system. We hope that the open-source nature of OPRA will foster development of computerized group decision support systems.  more » « less
Award ID(s):
1453542 1716333
PAR ID:
10382697
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
35
Issue:
18
ISSN:
2159-5399
Page Range / eLocation ID:
16011 to 16013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wireless sensor networks support decision-making in diverse environmental contexts. Adoption of these networks has increased dramatically due to technological advances that have increased value while lowering cost. However, real-time information only allows for reactive management. As most interventions take time, predictions across these sensor networks enable better planning and decision making. Prediction models across large water level and discharge sensor networks do exist. However, they have limitations in their accessibility, automaticity, and data requirements. We present an open-source method for automatically generating computationally cheap rainfall-runoff models for any depth or discharge sensor given only its measurements and location. We characterize reliability in a real-world case study across 200,000 km, evaluate long-term accuracy, and assess sensitivity to measurement noise and errors in catchment delineation. The method’s accuracy, computational efficiency, and automaticity make it a valuable asset to support operational decision making for diverse stakeholders including bridge inspectors and utilities. 
    more » « less
  2. null (Ed.)
    Abstract Sensors and control technologies are being deployed at unprecedented levels in both urban and rural water environments. Because sensor networks and control allow for higher-resolution monitoring and decision making in both time and space, greater discretization of control will allow for an unprecedented precision of impacts, both positive and negative. Likewise, humans will continue to cede direct decision-making powers to decision-support technologies, e.g. data algorithms. Systems will have ever-greater potential to effect human lives, and yet, humans will be distanced from decisions. Combined these trends challenge water resources management decision-support tools to incorporate the concepts of ethical and normative expectations. Toward this aim, we propose the Water Ethics Web Engine (WE)2, an integrated and generalized web framework to incorporate voting-based ethical and normative preferences into water resources decision support. We demonstrate this framework with a ‘proof-of-concept’ use case where decision models are learned and deployed to respond to flooding scenarios. Findings indicate that the framework can capture group ‘wisdom’ within learned models to use in decision making. The methodology and ‘proof-of-concept’ system presented here are a step toward building a framework to engage people with algorithmic decision making in cases where ethical preferences are considered. We share our framework and its cyber components openly with the research community. 
    more » « less
  3. Investigation of neural processes underlying motor control requires behavioral readouts that capture the richness of actions, including both categorical (choice-based) information and motor execution (kinematics). We present an open-source platform for behavioral training of head-fixed mice that combines a stationary or retractable forelimb-based joystick, sound-presentation system, capacitive lick sensor, and water reward dispenser. The setup allows for the creation of multiple behavioral paradigms, two of which are highlighted here: a two-alternative forced-choice auditory-motor discrimination paradigm and a two-armed bandit value-based decision-making task. In the auditory-motor paradigm, mice learn to report high- or low-frequency tones by pushing or pulling the joystick. In the value-based paradigm, mice learn to push or pull the joystick based on the history of rewarded trials. In addition to reporting categorical choices, this setup provides a rich dataset of motor parameters that reflect components of the underlying learning and decision processes in both of these tasks. These kinematic parameters (including joystick speed and displacement, Fréchet similarity of trajectories, tortuosity, angular standard deviation, and movement vigor) provide key additional insights into the motor execution of choices that are not as readily assessed in other paradigms. The system's flexibility of task design, joystick readout, and ease of construction represent an advance compared with currently available manipulandum tasks in mice. We provide detailed schematics for constructing the setup and protocols for behavioral training using both paradigms, with the hope that this open-source resource is readily adopted by neuroscientists interested in mechanisms of sensorimotor integration, motor control, and choice behavior. 
    more » « less
  4. Advances in how we build and use software, specifically the integration of machine learning for decision making, have led to widespread concern around model and software fairness. We present fairkit-learn, an interactive Python toolkit designed to support data scientists' ability to reason about and understand model fairness. We outline how fairkit-learn can support model training, evaluation, and comparison and describe the potential benefit that comes with using fairkit-learn in comparison to the state-of-the-art. Fairkit-learn is open source at https://go.gmu.edu/fairkit-learn/. 
    more » « less
  5. The ubiquitous pollution of the environment with microplastics, a diverse suite of contaminants, is of growing concern for science and currently receives considerable public, political, and academic attention. The potential impact of microplastics in the environment has prompted a great deal of research in recent years. Many diverse methods have been developed to answer different questions about microplastic pollution, from sources, transport, and fate in the environment, and about effects on humans and wildlife. These methods are often insufficiently described, making studies neither comparable nor reproducible. The proliferation of new microplastic investigations and cross-study syntheses to answer larger scale questions are hampered. This diverse group of 23 researchers think these issues can begin to be overcome through the adoption of a set of reporting guidelines. This collaboration was created using an open science framework that we detail for future use. Here, we suggest harmonized reporting guidelines for microplastic studies in environmental and laboratory settings through all steps of a typical study, including best practices for reporting materials, quality assurance/quality control, data, field sampling, sample preparation, microplastic identification, microplastic categorization, microplastic quantification, and considerations for toxicology studies. We developed three easy to use documents, a detailed document, a checklist, and a mind map, that can be used to reference the reporting guidelines quickly. We intend that these reporting guidelines support the annotation, dissemination, interpretation, reviewing, and synthesis of microplastic research. Through open access licensing (CC BY 4.0), these documents aim to increase the validity, reproducibility, and comparability of studies in this field for the benefit of the global community. 
    more » « less