skip to main content

Title: A plethora of isomerization processes and hydrogen scrambling in the fragmentation of the methanol dimer cation: a PEPICO study
The valence photoionization of light and deuterated methanol dimers was studied by imaging photoelectron photoion coincidence spectroscopy in the 10.00–10.35 eV photon energy range. Methanol clusters were generated in a rich methanol beam in nitrogen after expansion into vacuum. They generally photoionize dissociatively to protonated methanol cluster cations, (CH 3 OH) n H + . However, the stable dimer parent ion (CH 3 OH) 2 + is readily detected below the dissociation threshold to yield the dominant CH 3 OH 2 + fragment ion. In addition to protonated methanol, we could also detect the water- and methyl-loss fragment ions of the methanol dimer cation for the first time. These newly revealed fragmentation channels are slow and cannot compete with protonated methanol cation formation at higher internal energies. In fact, the water- and methyl-loss fragment ions appear together and disappear at a ca. 150 meV higher energy in the breakdown diagram. Experiments with selectively deuterated methanol samples showed H scrambling involving two hydroxyl and one methyl hydrogens prior to protonated methanol formation. These insights guided the potential energy surface exploration to rationalize the dissociative photoionization mechanism. The potential energy surface was further validated by a statistical model including isotope effects to more » fit the experiment for the light and the perdeuterated methanol dimers simultaneously. The (CH 3 OH) 2 + parent ion dissociates via five parallel channels at low internal energies. The loss of both CH 2 OH and CH 3 O neutral fragments leads to protonated methanol. However, the latter, direct dissociation channel is energetically forbidden at low energies. Instead, an isomerization transition state is followed by proton transfer from a methyl group, which leads to the CH 3 (H)OH + ⋯CH 2 OH ion, the precursor to the CH 2 OH-, H 2 O-, and CH 3 -loss fragments after further isomerization steps, in part by a roaming mechanism. Water loss yields the ethanol cation, and two paths are proposed to account for m/z 49 fragment ions after CH 3 loss. The roaming pathways are quickly outcompeted by hydrogen bond breaking to yield CH 3 OH 2 + , which explains the dominance of the protonated methanol fragment ion in the mass spectrum. « less
Authors:
; ; ; ; ;
Award ID(s):
1665464
Publication Date:
NSF-PAR ID:
10382702
Journal Name:
Physical Chemistry Chemical Physics
Volume:
24
Issue:
3
Page Range or eLocation-ID:
1437 to 1446
ISSN:
1463-9076
Sponsoring Org:
National Science Foundation
More Like this
  1. The dissociative photoionization processes of methyl hydroperoxide (CH 3 OOH) have been studied by imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy experiments as well as quantum-chemical and statistical rate calculations. Energy selected CH 3 OOH + ions dissociate into CH 2 OOH + , HCO + , CH 3 + , and H 3 O + ions in the 11.4–14.0 eV photon energy range. The lowest-energy dissociation channel is the formation of the cation of the smallest “QOOH” radical, CH 2 OOH + . An extended RRKM model fitted to the experimental data yields a 0 K appearance energy of 11.647 ± 0.005 eV for the CH 2 OOH + ion, and a 74.2 ± 2.6 kJ mol –1 mixed experimental-theoretical 0 K heat of formation for the CH 2 OOH radical. The proton affinity of the Criegee intermediate, CH 2 OO, was also obtained from the heat of formation of CH 2 OOH + (792.8 ± 0.9 kJ mol –1 ) to be 847.7 ± 1.1 kJ mol –1 , reducing the uncertainty of the previously available computational value by a factor of 4. RRKM modeling of the complex web of possible rearrangement-dissociation processes were used to model the higher-energymore »fragmentation. Supported by Born–Oppenheimer molecular dynamics simulations, we found that the HCO + fragment ion is produced through a roaming transition state followed by a low barrier. H 3 O + is formed in a consecutive process from the CH 2 OOH + fragment ion, while direct C–O fission of the molecular ion leads to the methyl cation.« less
  2. A combined experimental and theoretical study is presented on the collision-induced dissociation (CID) of 9-methylguanine–1-methylcytosine base-pair radical cation (abbreviated as [9MG·1MC]˙ + ) and its monohydrate ([9MG·1MC]˙ + ·H 2 O) with Xe and Ar gases. Product ion mass spectra were measured as a function of collision energy using guided-ion beam tandem mass spectrometry, from which cross sections and threshold energies for various dissociation pathways were determined. Electronic structure calculations were performed at the DFT, RI-MP2 and DLPNO-CCSD(T) levels of theory to identify product structures and map out reaction potential energy surfaces. [9MG·1MC]˙ + has two structures: a conventional structure 9MG˙ + ·1MC (population 87%) consisting of hydrogen-bonded 9-methylguanine radical cation and neutral 1-methylcytosine, and a proton-transferred structure [9MG − H]˙·[1MC + H] + (less stable, population 13%) formed by intra-base-pair proton transfer from the N1 of 9MG˙ + to the N3 of 1MC within 9MG˙ + ·1MC. The two structures have similar dissociation energies but can be distinguished in that 9MG˙ + ·1MC dissociates into 9MG˙ + and 1MC whereas [9MG – H]˙·[1MC + H] + dissociates into neutral [9MG – H]˙ radical and protonated [1MC + H] + . An intriguing finding is that, in both Xe- andmore »Ar-induced CID of [9MG·1MC]˙ + , product ions were overwhelmingly dominated by [1MC + H] + , which is contrary to product distributions predicted using a statistical reaction model. Monohydration of [9MG·1MC]˙ + reversed the populations of the conventional structure (43%) vs. the proton-transferred structure (57%) and induced new reactions upon collisional activation, of which intra-base-pair hydrogen transfer produced [9MG + H] + and the reaction of the water ligand with a methyl group in [9MG·1MC]˙ + led to methanol elimination from [9MG·1MC]˙ + ·H 2 O.« less
  3. We investigated the collision-induced dissociation (CID) reactions of a protonated Hoogsteen 9-methylguanine–1-methylcytosine base pair (HG-[9MG·1MC + H] + ), which aims to address the mystery of the literature reported “anomaly” in product ion distributions and compare the kinetics of a Hoogsteen base pair with its Watson-Crick isomer WC-[9MG·1MC + H] + (reported recently by Sun et al. ; Phys. Chem. Chem. Phys. , 2020, 22 , 24986). Product ion cross sections and branching ratios were measured as a function of center-of-mass collision energy using guided-ion beam tandem mass spectrometry, from which base-pair dissociation energies were determined. Product structures and energetics were assessed using various theories, of which the composite DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-311++G(d,p) was adopted as the best-performing method for constructing a reaction potential energy surface. The statistical Rice–Ramsperger–Kassel–Marcus theory was found to provide a useful framework for rationalizing the dominating abundance of [1MC + H] + over [9MG + H] + in the fragment ions of HG-[9MG·1MC + H] + . The kinetics analysis proved the necessity for incorporating into kinetics modeling not only the static properties of reaction minima and transition states but more importantly, the kinetics of individual base-pair conformers that have formed in collisional activation. The analysis also pinpointedmore »the origin of the statistical kinetics of HG-[9MG·1MC + H] + vs. the non-statistical behavior of WC-[9MG·1MC + H] + in terms of their distinctively different intra-base-pair hydrogen-bonds and consequently the absence of proton transfer between the N1 position of 9MG and the N3′ of 1MC in the Hoogsteen base pair. Finally, the Hoogsteen base pair was examined in the presence of a water ligand, i.e. , HG-[9MG·1MC + H] + ·H 2 O. Besides the same type of base-pair dissociation as detected in dry HG-[9MG·1MC + H] + , secondary methanol elimination was observed via the S N 2 reaction of water with nucleobase methyl groups.« less
  4. A guided-ion beam tandem mass spectrometric study was performed on collision-induced dissociation (CID) of a protonated 9-methylguanine–1-methylcytosine Watson–Crick base pair (designated as WC-[9MG·1MC + H] + ), from which dissociation pathways and dissociation energies were determined. Electronic structure calculations at the DFT, RI-MP2 and DLPNO-CCSD(T) levels of theory were used to identify product structures and delineate reaction mechanisms. Intra-base-pair proton transfer (PT) of WC-[9MG·1MC + H] + results in conventional base-pair conformations that consist of hydrogen-bonded [9MG + H] + and 1MC and proton-transferred conformations that are formed by PT from the N1 of [9MG + H] + to the N3′ of 1MC. Two types of conformers were distinguished by CID in which the conventional conformers produced [9MG + H] + product ions whereas the proton-transferred conformers produced [1MC + H] + . The conventional conformers have a higher population (99.8%) and lower dissociation energy than the proton-transferred counterparts. However, in contrast to what was expected from the statistical dissociation of the equilibrium base-pair conformational ensemble, the CID product ions of WC-[9MG·1MC + H] + were dominated by [1MC + H] + rather than [9MG + H] + . This finding, alongside the non-statistical CID reported for deprotonated guanine–cytosine (Lumore »et al. ; PCCP , 2016, 18 , 32222) and guanine–cytosine radical cation (Sun et al. ; PCCP , 2020, 22 , 14875), reinforces that non-statistical dissociation is a distinctive feature of singly-charged Watson–Crick guanine–cytosine base pairs. It implies that intra-base-pair PT facilitates the formation of proton-transferred conformers in these systems and the ensuing conformers have loose transition states for dissociation. The monohydrate of WC-[9MG·1MC + H] + preserves non-statistical CID kinetics and introduces collision-induced methanol elimination via the reaction of the water ligand with a methyl group.« less
  5. Acetaldehyde cations (CH 3 CHO + ) were prepared using single-photon vacuum ultraviolet ionization of CH 3 CHO in a molecular beam and the fragmentation dynamics explored over the photolysis wavelength range 390–210 nm using velocity-map ion imaging and photofragment yield (PHOFY) spectroscopy. Four fragmentation channels are characterized: CH 3 CHO + → C 2 H 3 O + + H (I), CH 3 CHO + → HCO + + CH 3 (II), CH 3 CHO + → CH 3 + + HCO (III), CH 3 CHO + → CH 4 + + CO (IV). Channels (I), (II), and (IV) are observed across the full photolysis wavelength range while channel (III) is observed only at λ < 317 nm. Maximum fragment ion yields are obtained at ∼250 nm. Ion images were recorded over the range 316–228 nm, which corresponds to initial excitation to the B̃ 2 A′ and C̃ 2 A′ states of CH 3 CHO + . The speed and angular distributions are distinctly different for each detected ion and show evidence of both statistical and dynamical fragmentation pathways. At longer wavelengths, fragmentation via channel (I) leads to modest translational energies ( E T ), consistent with dissociation overmore »a small barrier and production of highly internally excited CH 3 CO + . Additional components with E INT greater than the CH 3 CO + secondary dissociation threshold appear at shorter wavelengths and are assigned to fragmentation products of vinyl alcohol cation or oxirane cation formed by isomerization of energized CH 3 CHO + . The E T distribution observed for channel (III) products peaks at zero but is notably colder than that predicted by phase space theory, particularly at longer photolysis wavelengths. The colder-than-statistical E T distributions are attributed to contributions from secondary fragmentation of energized CH 3 CO + formed via channel (I), which are attenuated by CH 3 CHO + isomerization at shorter wavelengths. Fragmentation via channels (II) and (IV) results in qualitatively similar outcomes, with evidence of isotropic statistical components at low- E T and anisotropic components due to excited state dynamics at higher E T .« less