The synthesis, photophysics, and electrochemiluminescence (ECL) of four water-soluble dinuclear Ir( iii ) and Ru( ii ) complexes (1–4) terminally-capped by 4′-phenyl-2,2′:6′,2′′-terpyridine (tpy) or 1,3-di(pyrid-2-yl)-4,6-dimethylbenzene (N^C^N) ligands and linked by a 2,7-bis(2,2′:6′,2′′-terpyridyl)fluorene with oligoether chains on C9 are reported. The impact of the tpy or N^C^N ligands and metal centers on the photophysical properties of 1–4 was assessed by spectroscopic methods including UV-vis absorption, emission, and transient absorption, and by time-dependent density functional theory (TDDFT) calculations. These complexes exhibited distinct singlet and triplet excited-state properties upon variation of the terminal-capping terdentate ligands and the metal centers. The ECL properties of complexes 1–3 with better water solubility were investigated in neutral phosphate buffer solutions (PBS) by adding tripropylamine (TPA) as a co-reactant, and the observed ECL intensity followed the descending order of 3 > 1 > 2. Complex 3 bearing the [Ru(tpy) 2 ] 2+ units displayed more pronounced ECL signals, giving its analogues great potential for further ECL study.
Impacts of extending the π-conjugation of the 2,2′-biquinoline ligand on the photophysics and reverse saturable absorption of heteroleptic cationic iridium( iii ) complexes
Two heteroleptic monocationic Ir( iii ) complexes bearing 6,6′-bis(7-benzothiazolylfluoren-2-yl)-2,2′-biquinoline as the diimine ligand with different degrees of π-conjugation were synthesized and their photophysics was investigated by spectroscopic techniques and first principles calculations. These complexes possessed two intense absorption bands at 300–380 nm and 380–520 nm in toluene that are predominantly ascribed to the diimine ligand-localized 1 π,π* transition and intraligand charge transfer ( 1 ILCT)/ 1 π,π* transitions, respectively, with the latter being mixed with minor 1 MLCT (metal-to-ligand charge transfer)/ 1 LLCT (ligand-to-ligand charge transfer) configurations. Both complexes also exhibited a spin-forbidden, very weak 3 MLCT/ 3 LLCT/ 3 π,π* absorption band at 520–650 nm. The emission of these complexes appeared in the red spectral region ( λ em : 640 nm for Ir-1 and 648 nm for Ir-2 in toluene) with a quantum yield of <10% and a lifetime of hundreds of ns, which emanated from the 3 ILCT/ 3 π,π* state. The 3 ILCT/ 3 π,π* state also gave rise to broad and moderately strong transient absorption (TA) at ca. 480–800 nm. Extending the π-conjugation of the diimine ligand via inserting CC triplet bonds between the 7-benzothiazolylfluoren-2-yl substituents and 2,2′-biquinoline slightly red-shifted the absorption bands, the emission more »
- Award ID(s):
- 1800476
- Publication Date:
- NSF-PAR ID:
- 10382807
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 9
- Issue:
- 44
- Page Range or eLocation-ID:
- 15932 to 15941
- ISSN:
- 2050-7526
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A series of cerium( iv ) mixed-ligand guanidinate–amide complexes, {[(Me 3 Si) 2 NC(N i Pr) 2 ] x Ce IV [N(SiMe 3 ) 2 ] 3−x } + ( x = 0–3), was prepared by chemical oxidation of the corresponding cerium( iii ) complexes, where x = 1 and 2 represent novel complexes. The Ce( iv ) complexes exhibited a range of intense colors, including red, black, cyan, and green. Notably, increasing the number of the guanidinate ligands from zero to three resulted in significant redshift of the absorption bands from 503 nm (2.48 eV) to 785 nm (1.58 eV) in THF. X-ray absorption near edge structure (XANES) spectra indicated increasing f occupancy ( n f ) with more guanidinate ligands, and revealed the multiconfigurational ground states for all Ce( iv ) complexes. Cyclic voltammetry experiments demonstrated less stabilization of the Ce( iv ) oxidation state with more guanidinate ligands. Moreover, the Ce( iv ) tris(guanidinate) complex exhibited temperature independent paramagnetism (TIP) arising from the small energy gap between the ground- and excited states with considerable magnetic moments. Computational analysis suggested that the origin of the low energy absorption bands was a charge transfer between guanidinate π orbitals thatmore »
-
Exploiting earth-abundant iron-based metal complexes as high-performance photosensitizers demands long-lived electronically excited metal-to-ligand charge-transfer (MLCT) states, but these species suffer typically from femtosecond timescale charge-transfer (CT)-state quenching by low-lying nonreactive metal-centered (MC) states. Here, we engineer supermolecular Fe(II) chromophores based on the bis(tridentate-ligand)metal(II)-ethyne-(porphinato)zinc(II) conjugated framework, previously shown to give rise to highly delocalized low-lying 3 MLCT states for other Group VIII metal (Ru, Os) complexes. Electronic spectral, potentiometric, and ultrafast pump–probe transient dynamical data demonstrate that a combination of a strong σ-donating tridentate ligand and a (porphinato)zinc(II) moiety with low-lying π*-energy levels, sufficiently destabilize MC states and stabilize supermolecular MLCT states to realize Fe(II) complexes that express 3 MLCT state photophysics reminiscent of their heavy-metal analogs. The resulting Fe(II) chromophore archetype, FeNHCPZn, features a highly polarized CT state having a profoundly extended 3 MLCT lifetime (160 ps), 3 MLCT phosphorescence, and ambient environment stability. Density functional and domain-based local pair natural orbital coupled cluster [DLPNO-CCSD(T)] theory reveal triplet-state wavefunction spatial distributions consistent with electronic spectroscopic and excited-state dynamical data, further underscoring the dramatic Fe metal-to-extended ligand CT character of electronically excited FeNHCPZn. This design further prompts intense panchromatic absorptivity via redistributing high-energy absorptive oscillator strength throughout the visible spectral domain,more »
-
A series of five ruthenium complexes containing triphenyl phosphine groups known to enhance both cellular penetration and photoinduced ligand exchange, cis -[Ru(bpy) 2 (P( p -R-Ph) 3 )(CH 3 CN)] 2+ , where bpy = 2,2′-bipyridine and P( p -R-Ph) 3 represent para -substituted triphenylphosphine ligands with R = –OCH 3 (1), –CH 3 (2) –H (3), –F (4), and –CF 3 (5), were synthesized and characterized. The photolysis of 1–5 in water with visible light ( λ irr ≥ 395 nm) results in the substitution of the coordinated acetonitrile with a solvent molecule, generating the corresponding aqua complex as the single photoproduct. A 3-fold variation in quantum yield was measured with 400 nm irradiation, Φ 400 , where 1 is the most efficient with a Φ 400 = 0.076(2), and 5 the least photoactive complex, with Φ 400 = 0.026(2). This trend is unexpected based on the red-shifted metal-to-ligand charge transfer (MLCT) absorption of 1 as compared to that of 5, but can be correlated to the substituent Hammett para parameters and p K a values of the ancillary phosphine ligands. Complexes 1–5 are not toxic towards the triple negative breast cancer cell line MDA-MB-231 in the dark, butmore »
-
Herein we report heteroleptic Co( ii ) diimine complexes [Co(H 2 bip) 2 Cl 2 ] ( 1 ), [Co(H 2 bip) 2 Br 2 ] ( 2 ), [Co(H 2 bip) 3 ]Br 2 ·1MeOH ( 3 ) and [Co(H 2 bip) 2 (Me 2 bpy)]Br 2 ·(MeCN) 0.5 ·(H 2 O) 0.25 ( 4 ) (H 2 bip = 2,2′-bi-1,4,5,6-tetrahydropyrimidine, bpy = 2,2′-dipyridyl, Me 2 bpy = 4,4′-Me-2,2′-dipyridyl), purposefully prepared to enable a systematic study of magnetic property changes arising from the increase of overall ligand field from σ/π-donor chlorido ( 1 ) to π-acceptor 4,4′Me-2,2′bpy ( 4 ). The presence of axial and rhombic anisotropy ( D and E ) of these compounds is sufficient to allow 1–4 to show field-induced slow relaxation of magnetization. Interestingly, we found as the effective ligand field is increased in the series, rhombicity ( E / D ) decreases, and the magnetic relaxation profile changes significantly, where relaxation of magnetization at a specific temperature becomes gradually faster. We performed mechanistic analyses of the temperature dependence of magnetic relaxation times considering Orbach relaxation processes, Raman-like relaxation and quantum tunnelling of magnetization (QTM). The effective energy barrier of the Orbach relaxation process (more »