skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New physaloid fruit‐fossil species from early Eocene South America
PremiseSolanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil comes from the early Eocene Laguna del Hunco site (ca. 52 Ma) in Chubut, Argentina, which previously yielded the only other physaloid fruit fossil,Physalis infinemundi. MethodsThe fruit morphology and calyx venation pattern of the new fossil were compared withP. infinemundiand extant species of Solanaceae. ResultsPhysalis hunickeniisp. nov. is clearly distinct fromP. infinemundiin its fruiting calyx with wider primary veins, longer and thinner lobes, and especially in its venation pattern with high density, transverse tertiary veins; these features support its placement in a new species. In comparison with extant physaloid genera, the calyx venation pattern and other diagnostic traits reinforce placement of the new fossil, likeP. infinemundi, within the tribe Physalideae of Solanaceae. ConclusionsBoth species of fossil nightshades from Laguna del Hunco represent crown‐group Solanaceae but are older than all prior age estimates of the family. Although at least 20 transoceanic dispersals have been proposed as the driver of range expansion of Solanaceae, the Patagonian fossils push back the diversification of the family to Gondwanan times. Thus, overland dispersal across Gondwana is now a likely scenario for at least some biogeographic patterns, in light of the ancient trans‐Antarctic land connections between South America and Australia.  more » « less
Award ID(s):
1925552 1925755 1556666
PAR ID:
10382851
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Botany
Volume:
107
Issue:
12
ISSN:
0002-9122
Format(s):
Medium: X Size: p. 1749-1762
Size(s):
p. 1749-1762
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PremiseAcmopyle(Podocarpaceae) comprises two extant species from Oceania that are physiologically restricted to ever‐wet rainforests, a confirmed fossil record based on leaf adpressions and cuticles in Australia since the Paleocene, and a few uncertain reports from New Zealand, Antarctica, and South America. We investigated fossil specimens withAcmopyleaffinities from the early Eocene Laguna del Hunco site in Patagonia, Argentina. MethodsWe studied 42 adpression leafy‐shoot fossils and included them in a total evidence phylogenetic analysis. ResultsAcmopyle grayaesp. nov. is based on heterophyllous leafy shoots with three distinct leaf types. Among these, bilaterally flattened leaves uniquely preserve subparallel, linear features that we interpret as accessory transfusion tissue (ATT, an extra‐venous water‐conducting tissue). Some apical morphologies ofA. grayaeshoots are compatible with the early stages of ovuliferous cone development. Our phylogenetic analysis recovers the new species in a polytomy with the two extantAcmopylespecies. We report several types of insect‐herbivory damage. We also transferAcmopyle engelhardtifrom the middle Eocene Río Pichileufú flora toDacrycarpus engelhardticomb. nov. ConclusionsWe confirm the biogeographically significant presence of the endangered West Pacific genusAcmopylein Eocene Patagonia.Acmopyleis one of the most drought‐intolerant genera in Podocarpaceae, possibly due to the high collapse risk of the ATT, and thus the new fossil species provides physiological evidence for the presence of an ever‐wet rainforest environment at Laguna del Hunco during the Early Eocene Climatic Optimum. 
    more » « less
  2. Premise of the StudyThe evolution of novel fruit morphologies has been integral to the success of angiosperms. The inflated fruiting calyx, in which the balloon‐like calyx swells to completely surround the fruit, has evolved repeatedly across angiosperms and is postulated to aid in protection and dispersal. We investigated the evolution of this trait in the tomatillos and their allies (Physalideae, Solanaceae). MethodsThe Physalideae phylogeny was estimated using four regions (ITS,LEAFY,trnL‐F,waxy) with maximum likelihood (ML) and Bayesian inference. Under the best‐fittingMLmodel of trait evolution, we estimated ancestral states along with the numbers of gains and losses of fruiting calyx accrescence and inflation with Bayesian stochastic mapping. Also, phylogenetic signal in calyx morphology was examined with two metrics (parsimony score and Fritz and Purvis'sD). Key ResultsBased on our well‐resolved and densely sampled phylogeny, we infer that calyx evolution has proceeded in a stepwise and directional fashion, from non‐accrescent to accrescent to inflated. In total, we inferred 24 gains of accrescence, 24 subsequent transitions to a fully inflated calyx, and only two reversals. Despite this lability, fruiting calyx accrescence and inflation showed strong phylogenetic signal. ConclusionsOur phylogeny greatly improves the resolution of Physalideae and highlights the need for taxonomic work. The comparative analyses reveal that the inflated fruiting calyx has evolved many times and that the trajectory toward this phenotype is generally stepwise and irreversible. These results provide a strong foundation for studying the genetic and developmental mechanisms responsible for the repeated origins of this charismatic fruit trait. 
    more » « less
  3. Two silicified fossil woods are identified as a new species of Laurinoxylon from the Huitrera Formation at Laguna del Hunco in the Chubut Province of Argentina. Supporting characters include the absence of growth ring boundaries, vessels solitary or in short radial multiples, simple and scalariform perforation plates, alternate intervessel pitting, scalariform vessel-ray pits, scarce axial parenchyma, septate fibres, rays usually one to four cells wide, and idioblasts commonly associated with rays and rarely with the axial parenchyma. The fossil woods resemble members of the Perseae-Cinnamomeae-Laureae clade but do not closely match any extant genus; they therefore probably represent an extinct lineage. Although lauraceous woods are known from other Palaeocene and Eocene floras in Patagonia, the presence of the family at Laguna del Hunco was previously based only on leaf compressions without preserved cuticular details. Our new record confirms the occurrence of Lauraceae in the diverse Laguna del Hunco flora, which contains many genera associated with extant rainforest floras. 
    more » « less
  4. Abstract PremiseAraliaceae comprise a moderately diverse, predominantly tropical angiosperm family with a limited fossil record. Gondwanan history of Araliaceae is hypothesized in the literature, but no fossils have previously been reported from the former supercontinent. MethodsI describe large (to macrophyll size), palmately compound‐lobed leaf fossils and an isolated umbellate infructescence from the early Eocene (52 Ma), late‐Gondwanan paleorainforest flora at Laguna del Hunco in Argentine Patagonia. ResultsThe leaf fossils are assigned to Caffapanax canessae gen. et sp. nov. (Araliaceae). Comparable living species belong to five genera that are primarily distributed from Malesia to South China. The most similar genus is Osmoxylon, which is centered in east Malesia and includes numerous threatened species. The infructescence is assigned to Davidsaralia christophae gen. et sp. nov. (Araliaceae) and is also comparable to Osmoxylon. ConclusionsThe Caffapanax leaves and Davidsaralia infructescence, potentially representing the same source taxon, are the oldest araliaceous macrofossils and provide direct evidence of Gondwanan history in the family. The new fossils and their large leaves enrich the well‐established biogeographic and climatic affinities of the fossil assemblage with imperiled Indo‐Pacific, everwet tropical rainforests. The fossils most likely represent shrubs or small trees, adding to the rich record of understory vegetation recovered from Laguna del Hunco. 
    more » « less
  5. Abstract PremiseFossil infructescences and isolated fruits with characters of Malvoideae, a subfamily of Malvaceae (mallow family), were collected from early Eocene sediments in Chubut, Argentina. The main goals of this research are to describe and place these fossils systematically, and to explore their biogeographical implications. MethodsFossils were collected at the Laguna del Hunco site, Huitrera Formation, Chubut, Patagonia, Argentina. They were prepared, photographed, and compared with extant and fossil infructescences and fruits of various families using herbarium material and literature. ResultsThe infructescences are panicles with alternate arrangement of fruits. They bear the fruits on short pedicels that are subtended by a bract; the fruits display an infracarpelar disk and split to the base into five ovate sections interpreted as mericarps. Each mericarp is characterized by an acute apex and the presence of a longitudinal ridge. The isolated fruits show the same features as those on the infructescences. The fossils share unique features with members of the cosmopolitan family Malvaceae, subfamily Malvoideae. ConclusionsThe fossils have a unique combination of characters that does not conform to any previously described genus, justifying the erection of a new genus and species,Uiher karuen. This new taxon constitutes the first known Malvoideae reproductive fossils of the Southern Hemisphere, expanding the distribution of Malvoideae during the early Eocene. 
    more » « less