skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AMOEBA Force Field Trajectories Improve Predictions of Accurate p K a Values of the GFP Fluorophore: The Importance of Polarizability and Water Interactions
Award ID(s):
1714555
PAR ID:
10382876
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry B
Volume:
126
Issue:
40
ISSN:
1520-6106
Page Range / eLocation ID:
7806 to 7817
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The M BH – σ ⋆ relation is considered a result of coevolution between the host galaxies and their supermassive black holes. For elliptical bulge hosting inactive galaxies, this relation is well established, but there is still discussion concerning whether active galaxies follow the same relation. Aims. In this paper, we estimate black hole masses for a sample of 19 local luminous active galactic nuclei (AGNs; LLAMA) to test their location on the M BH – σ ⋆ relation. In addition, we test how robustly we can determine the stellar velocity dispersion in the presence of an AGN continuum and AGN emission lines, and as a function of signal-to-noise ratio. Methods. Supermassive black hole masses ( M BH ) were derived from the broad-line-based relations for H α , H β , and Pa β emission line profiles for Type 1 AGNs. We compared the bulge stellar velocity dispersion ( σ ⋆ ) as determined from the Ca II triplet (CaT) with the dispersion measured from the near-infrared CO (2-0) absorption features for each AGN and find them to be consistent with each other. We applied an extinction correction to the observed broad-line fluxes and we corrected the stellar velocity dispersion by an average rotation contribution as determined from spatially resolved stellar kinematic maps. Results. The H α -based black hole masses of our sample of AGNs were estimated in the range 6.34 ≤ log M BH  ≤ 7.75 M ⊙ and the σ ⋆CaT estimates range between 73 ≤  σ ⋆CaT  ≤ 227 km s −1 . From the so-constructed M BH  −  σ ⋆ relation for our Type 1 AGNs, we estimate the black hole masses for the Type 2 AGNs and the inactive galaxies in our sample. Conclusions. We find that our sample of local luminous AGNs is consistent with the M BH – σ ⋆ relation of lower luminosity AGNs and inactive galaxies, after correcting for dust extinction and the rotational contribution to the stellar velocity dispersion. 
    more » « less
  2. An updated fit to the interacting levelsν3andν6of CF3I has been evaluated in this work. 
    more » « less
  3. Abstract For a subgraph$$G$$of the blow-up of a graph$$F$$, we let$$\delta ^*(G)$$be the smallest minimum degree over all of the bipartite subgraphs of$$G$$induced by pairs of parts that correspond to edges of$$F$$. Johansson proved that if$$G$$is a spanning subgraph of the blow-up of$$C_3$$with parts of size$$n$$and$$\delta ^*(G) \ge \frac{2}{3}n + \sqrt{n}$$, then$$G$$contains$$n$$vertex disjoint triangles, and presented the following conjecture of Häggkvist. If$$G$$is a spanning subgraph of the blow-up of$$C_k$$with parts of size$$n$$and$$\delta ^*(G) \ge \left(1 + \frac 1k\right)\frac n2 + 1$$, then$$G$$contains$$n$$vertex disjoint copies of$$C_k$$such that each$$C_k$$intersects each of the$$k$$parts exactly once. A similar conjecture was also made by Fischer and the case$$k=3$$was proved for large$$n$$by Magyar and Martin. In this paper, we prove the conjecture of Häggkvist asymptotically. We also pose a conjecture which generalises this result by allowing the minimum degree conditions in each bipartite subgraph induced by pairs of parts of$$G$$to vary. We support this new conjecture by proving the triangle case. This result generalises Johannson’s result asymptotically. 
    more » « less