Contextualized word embeddings, such as ELMo, provide meaningful representations for words and their contexts. They have been shown to have a great impact on downstream applications. However, we observe that the contextualized embeddings of a word might change drastically when its contexts are paraphrased. As these embeddings are over-sensitive to the context, the downstream model may make different predictions when the input sentence is paraphrased. To address this issue, we propose a post-processing approach to retrofit the embedding with paraphrases. Our method learns an orthogonal transformation on the input space of the contextualized word embedding model, which seeks to minimize the variance of word representations on paraphrased contexts. Experiments show that the proposed method significantly improves ELMo on various sentence classification and inference tasks.
more »
« less
Discovering Differences in the Representation of People using Contextualized Semantic Axes
A common paradigm for identifying semantic differences across social and temporal contexts is the use of static word embeddings and their distances. In particular, past work has compared embeddings against “semantic axes” that represent two opposing concepts. We extend this paradigm to BERT embeddings, and construct contextualized axes that mitigate the pitfall where antonyms have neighboring representations. We validate and demonstrate these axes on two people-centric datasets: occupations from Wikipedia, and multi-platform discussions in extremist, men’s communities over fourteen years. In both studies, contextualized semantic axes can characterize differences among instances of the same word type. In the latter study, we show that references to women and the contexts around them have become more detestable over time.
more »
« less
- PAR ID:
- 10382961
- Date Published:
- Journal Name:
- Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Computational models of verbal analogy and relational similarity judgments can employ different types of vector representations of word meanings (embeddings) generated by machine-learning algorithms. An important question is whether human-like relational processing depends on explicit representations of relations (i.e., representations separable from those of the concepts being related), or whether implicit relation representations suffice. Earlier machine-learning models produced static embeddings for individual words, identical across all contexts. However, more recent Large Language Models (LLMs), which use transformer architectures applied to much larger training corpora, are able to produce contextualized embeddings that have the potential to capture implicit knowledge of semantic relations. Here we compare multiple models based on different types of embeddings to human data concerning judgments of relational similarity and solutions of verbal analogy problems. For two datasets, a model that learns explicit representations of relations, Bayesian Analogy with Relational Transformations (BART), captured human performance more successfully than either a model using static embeddings (Word2vec) or models using contextualized embeddings created by LLMs (BERT, RoBERTa, and GPT-2). These findings support the proposal that human thinking depends on representations that separate relations from the concepts they relate.more » « less
-
Dense document embeddings are central to neural retrieval. The dominant paradigm is to train and construct embeddings by running encoders directly on individual documents. In this work, we argue that these embeddings, while effective, are implicitly out-of-context for targeted use cases of retrieval, and that a contextualized document embedding should take into account both the document and neighboring documents in context - analogous to contextualized word embeddings. We propose two complementary methods for contextualized document embeddings: first, an alternative contrastive learning objective that explicitly incorporates the document neighbors into the intra-batch contextual loss; second, a new contextual architecture that explicitly encodes neighbor document information into the encoded representation. Results show that both methods achieve better performance than biencoders in several settings, with differences especially pronounced out-of-domain. We achieve state-of-the-art results on the MTEB benchmark with no hard negative mining, score distillation, dataset-specific instructions, intra-GPU example-sharing, or extremely large batch sizes. Our method can be applied to improve performance on any contrastive learning dataset and any biencoder.more » « less
-
While contextualized word representations have improved state-of-the-art benchmarks in many NLP tasks, their potential usefulness for social-oriented tasks remains largely unexplored. We show how contextualized word embeddings can be used to capture affect dimensions in portrayals of people. We evaluate our methodology quantitatively, on held-out affect lexicons, and qualitatively, through case examples. We find that contextualized word representations do encode meaningful affect information, but they are heavily biased towards their training data, which limits their usefulness to in-domain analyses. We ultimately use our method to examine differences in portrayals of men and women.more » « less
-
Unsupervised word embeddings have become a popular approach of word representation in NLP tasks. However there are limitations to the semantics represented by unsupervised embeddings, and inadequate fine-tuning of embeddings can lead to suboptimal performance. We propose a novel learning technique called Delta Embedding Learning, which can be applied to general NLP tasks to improve performance by optimized tuning of the word embeddings. A structured regularization is applied to the embeddings to ensure they are tuned in an incremental way. As a result, the tuned word embeddings become better word representations by absorbing semantic information from supervision without “forgetting.” We apply the method to various NLP tasks and see a consistent improvement in performance. Evaluation also confirms the tuned word embeddings have better semantic properties.more » « less
An official website of the United States government

