skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Retrofitting Contextualized Word Embeddings with Paraphrases
Contextualized word embeddings, such as ELMo, provide meaningful representations for words and their contexts. They have been shown to have a great impact on downstream applications. However, we observe that the contextualized embeddings of a word might change drastically when its contexts are paraphrased. As these embeddings are over-sensitive to the context, the downstream model may make different predictions when the input sentence is paraphrased. To address this issue, we propose a post-processing approach to retrofit the embedding with paraphrases. Our method learns an orthogonal transformation on the input space of the contextualized word embedding model, which seeks to minimize the variance of word representations on paraphrased contexts. Experiments show that the proposed method significantly improves ELMo on various sentence classification and inference tasks.  more » « less
Award ID(s):
1760523
PAR ID:
10144864
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Page Range / eLocation ID:
1198 - 1203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As natural language processing methods are increasingly deployed in real-world scenarios such as healthcare, legal systems, and social science, it becomes necessary to recognize the role they potentially play in shaping social biases and stereotypes. Previous work has revealed the presence of social biases in widely used word embeddings involving gender, race, religion, and other social constructs. While some methods were proposed to debias these word-level embeddings, there is a need to perform debiasing at the sentence-level given the recent shift towards new contextualized sentence representations such as ELMo and BERT. In this paper, we investigate the presence of social biases in sentence-level representations and propose a new method, Sent-Debias, to reduce these biases. We show that Sent-Debias is effective in removing biases, and at the same time, preserves performance on sentence-level downstream tasks such as sentiment analysis, linguistic acceptability, and natural language understanding. We hope that our work will inspire future research on characterizing and removing social biases from widely adopted sentence representations for fairer NLP. 
    more » « less
  2. Pre-trained language models (PLMs) aim to learn universal language representations by conducting self-supervised training tasks on large-scale corpora. Since PLMs capture word semantics in different contexts, the quality of word representations highly depends on word frequency, which usually follows a heavy-tailed distributions in the pre-training corpus. Therefore, the embeddings of rare words on the tail are usually poorly optimized. In this work, we focus on enhancing language model pre-training by leveraging definitions of the rare words in dictionaries (e.g., Wiktionary). To incorporate a rare word definition as a part of input, we fetch its definition from the dictionary and append it to the end of the input text sequence. In addition to training with the masked language modeling objective, we propose two novel self-supervised pre-training tasks on word and sentence-level alignment between input text sequence and rare word definitions to enhance language modeling representation with dictionary. We evaluate the proposed Dict-BERT model on the language understanding benchmark GLUE and eight specialized domain benchmark datasets. Extensive experiments demonstrate that Dict-BERT can significantly improve the understanding of rare words and boost model performance on various NLP downstream tasks. 
    more » « less
  3. Contextual representation models have achieved great success in improving various downstream natural language processing tasks. However, these language-model-based encoders are difficult to train due to their large parameter size and high computational complexity. By carefully examining the training procedure, we observe that the softmax layer, which predicts a distribution of the target word, often induces significant overhead, especially when the vocabulary size is large. Therefore, we revisit the design of the output layer and consider directly predicting the pre-trained embedding of the target word for a given context. When applied to ELMo, the proposed approach achieves a 4-fold speedup and eliminates 80% trainable parameters while achieving competitive performance on downstream tasks. Further analysis shows that the approach maintains the speed advantage under various settings, even when the sentence encoder is scaled up. 
    more » « less
  4. A common paradigm for identifying semantic differences across social and temporal contexts is the use of static word embeddings and their distances. In particular, past work has compared embeddings against “semantic axes” that represent two opposing concepts. We extend this paradigm to BERT embeddings, and construct contextualized axes that mitigate the pitfall where antonyms have neighboring representations. We validate and demonstrate these axes on two people-centric datasets: occupations from Wikipedia, and multi-platform discussions in extremist, men’s communities over fourteen years. In both studies, contextualized semantic axes can characterize differences among instances of the same word type. In the latter study, we show that references to women and the contexts around them have become more detestable over time. 
    more » « less
  5. Traditional sentence embedding models encode sentences into vector representations to capture useful properties such as the semantic similarity between sentences. However, in addition to similarity, sentence semantics can also be interpreted via compositional operations such as sentence fusion or difference. It is unclear whether the compositional semantics of sentences can be directly reflected as compositional operations in the embedding space. To more effectively bridge the continuous embedding and discrete text spaces, we explore the plausibility of incorporating various compositional properties into the sentence embedding space that allows us to interpret embedding transformations as compositional sentence operations. We propose InterSent, an end-to-end framework for learning interpretable sentence embeddings that supports compositional sentence operations in the embedding space. Our method optimizes operator networks and a bottleneck encoder-decoder model to produce meaningful and interpretable sentence embeddings. Experimental results demonstrate that our method significantly improves the interpretability of sentence embeddings on four textual generation tasks over existing approaches while maintaining strong performance on traditional semantic similarity tasks. 
    more » « less