skip to main content


Title: GRRMHD simulations of MAD accretion discs declining from super-Eddington to sub-Eddington accretion rates
ABSTRACT

We present two general relativistic radiation magnetohydrodynamics (GRRMHD) simulations of magnetically arrested discs (MADs) around non-spinning (a* = 0) and spinning (a* = 0.9) supermassive black holes (BHs). In each simulation, the mass accretion rate is decreased with time such that we sample Eddington-scaled rates over the range $3 \gtrsim \dot{M}/\dot{M}_{\rm {Edd}}\gtrsim 0.3$. For the non-spinning BH model, the total and radiative efficiencies increase as the accretion rate decreases, varying over the range $\eta _{\rm {tot}}\sim 9\!-\!16{{\ \rm per\ cent}}$ and $\eta _{\rm {rad}}\sim 6{-}12{{\ \rm per\ cent}}$, respectively. This model shows very little jet activity. In contrast, the spinning BH model has a strong relativistic jet powered by spin energy extracted from the BH. The jet power declines with accretion rate such that $\eta _{\rm {jet}}\sim 18{-}39{{\ \rm per\ cent}}$ while the total and radiative efficiencies are $\eta _{\rm {tot}}\sim 64{-}100{{\ \rm per\ cent}}$ and $\eta _{\rm {rad}}\sim 45{-}79{{\ \rm per\ cent}}$, respectively. We confirm that mildly sub-Eddington discs can extract substantial power from a spinning BH, provided they are in the MAD state. The jet profile out to $100\, GM/c^2$ is roughly parabolic with a power-law index of k ≈ 0.43−0.53 during the sub-Eddington evolution. Both models show significant variability in the outgoing radiation which is likely associated with episodes of magnetic flux eruptions. The a* = 0.9 model shows semiregular variations with a period of $\sim 2000\, GM/c^3$ over the final $\sim 10\, 000\, GM/c^3$ of the simulation, which suggests that magnetic flux eruptions may be an important source of quasi-periodic variability. For the simulated accretion rates, the a* = 0 model is spinning up while the a* = 0.9 model is spinning down. Spinup–spindown equilibrium of the BH will likely be achieved at 0.5 < a*, eq < 0.6, assuming continuous accretion in the MAD state.

 
more » « less
Award ID(s):
1816420
NSF-PAR ID:
10383018
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
518
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3441-3461
Size(s):
["p. 3441-3461"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present the results of nine simulations of radiatively inefficient magnetically arrested discs (MADs) across different values of the black hole spin parameter a*: −0.9, −0.7, −0.5, −0.3, 0, 0.3, 0.5, 0.7, and 0.9. Each simulation was run up to $t \gtrsim 100\, 000\, GM/c^3$ to ensure disc inflow equilibrium out to large radii. We find that the saturated magnetic flux level, and consequently also jet power, of MAD discs depends strongly on the black hole spin, confirming previous results. Prograde discs saturate at a much higher relative magnetic flux and have more powerful jets than their retrograde counterparts. MADs with spinning black holes naturally launch jets with generalized parabolic profiles whose widths vary as a power of distance from the black hole. For distances up to 100GM/c2, the power-law index is k ≈ 0.27–0.42. There is a strong correlation between the disc–jet geometry and the dimensionless magnetic flux, resulting in prograde systems displaying thinner equatorial accretion flows near the black hole and wider jets, compared to retrograde systems. Prograde and retrograde MADs also exhibit different trends in disc variability: accretion rate variability increases with increasing spin for a* > 0 and remains almost constant for a* ≲ 0, while magnetic flux variability shows the opposite trend. Jets in the MAD state remove more angular momentum from black holes than is accreted, effectively spinning down the black hole. If powerful jets from MAD systems in Nature are persistent, this loss of angular momentum will notably reduce the black hole spin over cosmic time.

     
    more » « less
  2. ABSTRACT

    We present general relativistic radiation magnetohydrodynamics (GRRMHD) simulations of super-Eddington accretion flows around supermassive black holes (SMBHs), which may apply to tidal disruption events (TDEs). We perform long duration ($t\ge 81,200\, GM/c^3$) simulations that achieve mass accretion rates ≳11 times the Eddington rate and produce thermal synchrotron spectra and images of their jets. Gas flowing beyond the funnel wall expands conically and drives a strong shock at the jet head while variable mass ejection and recollimation, along the jet axis, results in internal shocks and dissipation. Assuming the ion temperature (Ti) and electron temperature (Te) in the plasma are identical, the radio/submillimetre spectra peak at >100 GHz and the luminosity increases with BH spin, exceeding $\sim 10^{41} \, \rm {erg\, s^{-1}}$ in the brightest models. The emission is extremely sensitive to Ti/Te as some models show an order-of-magnitude decrease in the peak frequency and up to four orders-of-magnitude decline in their radio/submillimetre luminosity as Ti/Te approaches 20. Assuming a maximum VLBI baseline distance of 10 Gλ, 230 GHz images of Ti/Te = 1 models shows that the jet head may be bright enough for its motion to be captured with the EHT (ngEHT) at D ≲ 110 (180) Mpc at the 5σ significance level. Resolving emission from internal shocks requires D ≲ 45 Mpc for both the EHT or ngEHT.

     
    more » « less
  3. ABSTRACT

    Formation of supermassive black holes (BHs) remains a theoretical challenge. In many models, especially beginning from stellar relic ‘seeds,’ this requires sustained super-Eddington accretion. While studies have shown BHs can violate the Eddington limit on accretion disc scales given sufficient ‘fuelling’ from larger scales, what remains unclear is whether or not BHs can actually capture sufficient gas from their surrounding interstellar medium (ISM). We explore this in a suite of multiphysics high-resolution simulations of BH growth in magnetized, star-forming dense gas complexes including dynamical stellar feedback from radiation, stellar mass-loss, and supernovae, exploring populations of seeds with masses $\sim 1\!-\!10^{4}\, \mathrm{M}_{\odot }$. In this initial study, we neglect feedback from the BHs: so this sets a strong upper limit to the accretion rates seeds can sustain. We show that stellar feedback plays a key role. Complexes with gravitational pressure/surface density below $\sim 10^{3}\, \mathrm{M}_{\odot }\, {\rm pc^{-2}}$ are disrupted with low star formation efficiencies so provide poor environments for BH growth. But in denser cloud complexes, early stellar feedback does not rapidly destroy the clouds but does generate strong shocks and dense clumps, allowing $\sim 1{{\ \rm per\ cent}}$ of randomly initialized seeds to encounter a dense clump with low relative velocity and produce runaway, hyper-Eddington accretion (growing by orders of magnitude). Remarkably, mass growth under these conditions is almost independent of initial BH mass, allowing rapid intermediate-mass black hole (IMBH) formation even for stellar-mass seeds. This defines a necessary (but perhaps not sufficient) set of criteria for runaway BH growth: we provide analytic estimates for the probability of runaway growth under different ISM conditions.

     
    more » « less
  4. Tidal disruption events (TDEs) around supermassive black holes (SMBHs) are a potential laboratory to study super-Eddington accretion disks and sometimes result in powerful jets or outflows which may shine in the radio and sub-millimeter bands. In this work, we modeled the thermal synchrotron emission of jets by general relativistic radiation magneto-hydrodynamics (GRRMHD) simulations of a BH accretion disk/jet system which assumed the TDE resulted in a magnetized accretion disk around a BH accreting at ∼12–25 times the Eddington accretion rate. Through synthetic observations with the Next Generation Event Horizon Telescope (ngEHT) and an image reconstruction analysis, we demonstrate that TDE jets may provide compelling targets within the context of the models explored in this work. In particular, we found that jets launched by a SANE super-Eddington disk around a spin a*=0.9 reach the ngEHT detection threshold at large distances (up to 100 Mpc in this work). A two-temperature plasma in the jet or weaker jets, such as a spin a*=0 model, requires a much closer distance, as we demonstrate detection at 10 Mpc for limiting cases of a*=0,R=1 or a*=0.9,R=20. We also demonstrate that TDE jets may appear as superluminal sources if the BH is rapidly rotating and the jet is viewed nearly face on. 
    more » « less
  5. Abstract

    A spinning black hole (BH) accreting from a disk of strongly magnetized plasma via a magnetically arrested disk is known to produce an efficient electromagnetic jet powered by the BH’s spin energy. We present general relativistic radiative magnetohydrodynamic simulations of magnetically arrested systems covering a range of sub- to super-Eddington accretion rates. Using the numerical results from these simulations, we develop formulae to describe the magnetization, jet efficiency, and spin evolution of an accreting BH as a function of its spin and accretion rate. A BH with near-Eddington accretion experiences a mild degree of spin-down because of angular momentum loss through the jet, leading to an equilibrium spin of 0.8 rather than 1.0 at the Eddington limit. As the accretion rate increases above Eddington, the spin-down effect becomes progressively stronger, ultimately converging on previous predictions based on nonradiative simulations. In particular, spin evolution drives highly super-Eddington systems toward a BH spin near zero. The formulae developed in this letter may be applied to galaxy- and cosmological-scale simulations that include BHs. If magnetically arrested disk accretion is common among supermassive BHs, the present results have broad implications for active galactic nucleus feedback and cosmological spin evolution.

     
    more » « less