Title: The Visible Cash Effect with Prepaid Incentives: Evidence for Data Quality, Response Rates, Generalizability, and Cost
Abstract
A prior study found that mailing prepaid incentives with $5 cash visible from outside the envelope increased the response rate to a mail survey by 4 percentage points compared to cash that was not externally visible. This “visible cash effect” suggests opportunities to improve survey response at little or no cost, but many unknowns remain. Among them: Does the visible cash effect generalize to different survey modes, respondent burdens, and cash amounts? Does it differ between fresh samples and reinterview samples? Does it affect data quality or survey costs? This article examines these questions using two linked studies where incentive visibility was randomized in a large probability sample for the American National Election Studies. The first study used $10 incentives with invitations to a long web questionnaire (median 71 minutes, n = 17,849). Visible cash increased response rates in a fresh sample for both screener and extended interview response (by 6.7 and 4.8 percentage points, respectively). Visible cash did not increase the response rate in a reinterview sample where the baseline reinterview response rate was very high (72 percent). The second study used $5 incentives with invitations to a mail-back paper questionnaire (n = 8,000). Visible cash increased the response rate in a sample more »
of prior nonrespondents by 4.0 percentage points (from 31.5 to 35.5), but it did not increase the response rate in a reinterview sample where the baseline reinterview rate was very high (84 percent). In the two studies, several aspects of data quality were investigated, including speeding, non-differentiation, item nonresponse, nonserious responses, noncredible responses, sample composition, and predictive validity; no adverse effects of visible cash were detected, and sample composition improved marginally. Effects on survey costs were either negligible or resulted in net savings. Accumulated evidence now shows that visible cash can increase incentives’ effectiveness in several circumstances.
A non-response follow-up study by mail in a national sample of U.S. households had five embedded experiments to test the effects of an advance mailing, alternate survey titles, 1- or 2-page questionnaire length, the inclusion or exclusion of political questions on the 1-page questionnaire, and the position of political content on the first or second page of the 2-page questionnaire. None of these design elements affected the payout of escalated postpaid incentives. Advance mailings had no effect on response rate. A short title (National Survey of Households) had a slightly higher response rate than a longer, more descriptive one (National Survey of Households, Families, and Covid-19). Political question content, whether by inclusion, exclusion, or position, had no discernable effect on response, even among prior-study non-respondents. Questionnaire length was inversely related to response: the 2-page questionnaire depressed the overall response rate by 3.7 points (58.5 compared to 54.8 percent, weighted) and depressed response for the critical sample group of prior non-respondents by 6.9 points (36.9 compared to 29.9).
Despite the growing popularity of digital payment transactions in the United States, most survey participation incentives are still paid through cash or check and then distributed to respondents or potential sample members via direct mail. Though survey researchers have explored alternative incentives, such as e-gift cards, for online samples, there has been no study of electronic cash incentives—specifically paid through mobile pay applications—to date. In this article, we briefly review the literature on incentives used in online surveys and then examine survey incentive payment preferences among respondents using a small, web-based survey of younger adults. Our results suggest a greater preference for cash incentives paid through mobile applications than through direct mail, further highlighting the need for more research on the efficacy of electronically-delivered monetary incentives.
Green Lake is the deepest natural inland lake in Wisconsin, with a maximum depth of about 72 meters. In the early 1900s, the lake was believed to have very good water quality (low nutrient concentrations and good water clarity) with low dissolved oxygen (DO) concentrations occurring in only the deepest part of the lake. Because of increased phosphorus (P) inputs from anthropogenic activities in its watershed, total phosphorus (TP) concentrations in the lake have increased; these changes have led to increased algal production and low DO concentrations not only in the deepest areas but also in the middle of the water column (metalimnion). The U.S. Geological Survey has routinely monitored the lake since 2004 and its tributaries since 1988. Results from this monitoring led the Wisconsin Department of Natural Resources (WDNR) to list the lake as impaired because of low DO concentrations in the metalimnion, and they identified elevated TP concentrations as the cause of impairment. As part of this study by the U.S. Geological Survey, in cooperation with the Green Lake Sanitary District, the lake and its tributaries were comprehensively sampled in 2017–18 to augment ongoing monitoring that would further describe the low DO concentrations in the lake (especiallymore »in the metalimnion). Empirical and process-driven water-quality models were then used to determine the causes of the low DO concentrations and the magnitudes of P-load reductions needed to improve the water quality of the lake enough to meet multiple water-quality goals, including the WDNR’s criteria for TP and DO. Data from previous studies showed that DO concentrations in the metalimnion decreased slightly as summer progressed in the early 1900s but, since the late 1970s, have typically dropped below 5 milligrams per liter (mg/L), which is the WDNR criterion for impairment. During 2014–18 (the baseline period for this study), the near-surface geometric mean TP concentration during June–September in the east side of the lake was 0.020 mg/L and in the west side was 0.016 mg/L (both were above the 0.015-mg/L WDNR criterion for the lake), and the metalimnetic DO minimum concentrations (MOMs) measured in August ranged from 1.0 to 4.7 mg/L. The degradation in water quality was assumed to have been caused by excessive P inputs to the lake; therefore, the TP inputs to the lake were estimated. The mean annual external P load during 2014–18 was estimated to be 8,980 kilograms per year (kg/yr), of which monitored and unmonitored tributary inputs contributed 84 percent, atmospheric inputs contributed 8 percent, waterfowl contributed 7 percent, and septic systems contributed 1 percent. During fall turnover, internal sediment recycling contributed an additional 7,040 kilograms that increased TP concentrations in shallow areas of the lake by about 0.020 mg/L. The elevated TP concentrations then persisted until the following spring. On an annual basis, however, there was a net deposition of P to the bottom sediments. Empirical models were used to describe how the near-surface water quality of Green Lake would be expected to respond to changes in external P loading. Predictions from the models showed a relatively linear response between P loading and TP and chlorophyll-a (Chl-a) concentrations in the lake, with the changes in TP and Chl-a concentrations being less on a percentage basis (50–60 percent for TP and 30–70 percent for Chl-a) than the changes in P loading. Mean summer water clarity, quantified by Secchi disk depths, had a greater response to decreases in P loading than to increases in P loading. Based on these relations, external P loading to the lake would need to be decreased from 8,980 kg/yr to about 5,460 kg/yr for the geometric mean June–September TP concentration in the east side of the lake, with higher TP concentrations than in the west side, to reach the WDNR criterion of 0.015 mg/L. This reduction of 3,520 kg/yr is equivalent to a 46-percent reduction in the potentially controllable external P sources (all external sources except for precipitation, atmospheric deposition, and waterfowl) from those measured during water years 2014–18. The total external P loading would need to decrease to 7,680 kg/yr (a 17-percent reduction in potentially controllable external P sources) for near-surface June–September TP concentrations in the west side of the lake to reach 0.015 mg/L. Total external P loading would need to decrease to 3,870–5,320 kg/yr for the lake to be classified as oligotrophic, with a near-surface June–September TP concentration of 0.012 mg/L. Results from the hydrodynamic water-quality model GLM–AED (General Lake Model coupled to the Aquatic Ecodynamics modeling library) indicated that MOMs are driven by external P loading and internal sediment recycling that lead to high TP concentrations during spring and early summer, which in turn lead to high phytoplankton production, high metabolism and respiration, and ultimately DO consumption in the upper, warmer areas of the metalimnion. GLM–AED results indicated that settling of organic material during summer might be slowed by the colder, denser, and more viscous water in the metalimnion and thus increase DO consumption. Based on empirical evidence from a comparison of MOMs with various meteorological, hydrologic, water quality, and in-lake physical factors, MOMs were lower during summers, when metalimnetic water temperatures were warmer, near-surface Chl-a and TP concentrations were higher, and Secchi depths were lower. GLM–AED results indicated that the external P load would need to be reduced to about 4,060 kg/yr, a 57-percent reduction from that measured in 2014–18, to eliminate the occurrence of MOMs less than 5 mg/L during more than 75 percent of the years (the target provided by the WDNR). Large reductions in external P loading are expected to have an immediate effect on the near-surface TP concentrations and metalimnetic DO concentrations in Green Lake; however, it may take several years for the full effects of the external-load reduction to be observed because internal sediment recycling is an important source of P for the following spring.« less
Hussain, Mir Zaman; Hamilton, Stephen; Robertson, G. Philip; Basso, Bruno(
)
Abstract
Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems may
leach legacy P from past cropland management.
Methods
Experimental details The Biofuel Cropping System Experiment (BCSE) is located at the W.K. Kellogg Biological Station (KBS) (42.3956° N, 85.3749° W; elevation 288 m asl) in southwestern Michigan, USA. This site is a part of the Great Lakes Bioenergy Research Center (www.glbrc.org) and is a Long-term Ecological Research site (www.lter.kbs.msu.edu). Soils are mesic Typic Hapludalfs developed on glacial outwash54 with high sand content (76% in the upper 150 cm) intermixed with silt-rich loess in the upper 50 cm55. The water table lies approximately 12–14 m below the surface. The climate is humid temperate with a mean annual air temperature of 9.1 °C and annual precipitation of 1005 mm, 511 mm of which falls between May and September (1981–2010)56,57. The BCSE was established as a randomized complete block design in 2008 on preexisting farmland. Prior to BCSE establishment, the field was used for grain crop and alfalfa (Medicago sativa L.) production for several decades. Between 2003 and 2007, the field received a total of ~ 300 kg P ha−1 as manure, and the southern half, which contains one of four replicate plots, received an additional 206 kg P ha−1 as inorganic fertilizer. The experimental design consists of five randomized blocks each containing one replicate plot (28 by 40 m) of 10 cropping systems (treatments) (Supplementary Fig. S1; also see Sanford et al.58). Block 5 is not included in the present study. Details on experimental design and site history are provided in Robertson and Hamilton57 and Gelfand et al.59. Leaching of P is analyzed in six of the cropping systems: (i) continuous no-till corn, (ii) switchgrass, (iii) miscanthus, (iv) a mixture of five species of native grasses, (v) a restored native prairie containing 18 plant species (Supplementary Table S1), and (vi) hybrid poplar. Agronomic management Phenological cameras and field observations indicated that the perennial herbaceous crops emerged each year between mid-April and mid-May. Corn was planted each year in early May. Herbaceous crops were harvested at the end of each growing season with the timing depending on weather: between October and November for corn and between November and December for herbaceous perennial crops. Corn stover was harvested shortly after corn grain, leaving approximately 10 cm height of stubble above the ground. The poplar was harvested only once, as the culmination of a 6-year rotation, in the winter of 2013–2014. Leaf emergence and senescence based on daily phenological images indicated the beginning and end of the poplar growing season, respectively, in each year. Application of inorganic fertilizers to the different crops followed a management approach typical for the region (Table 1). Corn was fertilized with 13 kg P ha−1 year−1 as starter fertilizer (N-P-K of 19-17-0) at the time of planting and an additional 33 kg P ha−1 year−1 was added as superphosphate in spring 2015. Corn also received N fertilizer around the time of planting and in mid-June at typical rates for the region (Table 1). No P fertilizer was applied to the perennial grassland or poplar systems (Table 1). All perennial grasses (except restored prairie) were provided 56 kg N ha−1 year−1 of N fertilizer in early summer between 2010 and 2016; an additional 77 kg N ha−1 was applied to miscanthus in 2009. Poplar was fertilized once with 157 kg N ha−1 in 2010 after the canopy had closed. Sampling of subsurface soil water and soil for P determination Subsurface soil water samples were collected beneath the root zone (1.2 m depth) using samplers installed at approximately 20 cm into the unconsolidated sand of 2Bt2 and 2E/Bt horizons (soils at the site are described in Crum and Collins54). Soil water was collected from two kinds of samplers: Prenart samplers constructed of Teflon and silica (http://www.prenart.dk/soil-water-samplers/) in replicate blocks 1 and 2 and Eijkelkamp ceramic samplers (http://www.eijkelkamp.com) in blocks 3 and 4 (Supplementary Fig. S1). The samplers were installed in 2008 at an angle using a hydraulic corer, with the sampling tubes buried underground within the plots and the sampler located about 9 m from the plot edge. There were no consistent differences in TDP concentrations between the two sampler types. Beginning in the 2009 growing season, subsurface soil water was sampled at weekly to biweekly intervals during non-frozen periods (April–November) by applying 50 kPa of vacuum to each sampler for 24 h, during which the extracted water was collected in glass bottles. Samples were filtered using different filter types (all 0.45 µm pore size) depending on the volume of leachate collected: 33-mm dia. cellulose acetate membrane filters when volumes were less than 50 mL; and 47-mm dia. Supor 450 polyethersulfone membrane filters for larger volumes. Total dissolved phosphorus (TDP) in water samples was analyzed by persulfate digestion of filtered samples to convert all phosphorus forms to soluble reactive phosphorus, followed by colorimetric analysis by long-pathlength spectrophotometry (UV-1800 Shimadzu, Japan) using the molybdate blue method60, for which the method detection limit was ~ 0.005 mg P L−1. Between 2009 and 2016, soil samples (0–25 cm depth) were collected each autumn from all plots for determination of soil test P (STP) by the Bray-1 method61, using as an extractant a dilute hydrochloric acid and ammonium fluoride solution, as is recommended for neutral to slightly acidic soils. The measured STP concentration in mg P kg−1 was converted to kg P ha−1 based on soil sampling depth and soil bulk density (mean, 1.5 g cm−3). Sampling of water samples from lakes, streams and wells for P determination In addition to chemistry of soil and subsurface soil water in the BCSE, waters from lakes, streams, and residential water supply wells were also sampled during 2009–2016 for TDP analysis using Supor 450 membrane filters and the same analytical method as for soil water. These water bodies are within 15 km of the study site, within a landscape mosaic of row crops, grasslands, deciduous forest, and wetlands, with some residential development (Supplementary Fig. S2, Supplementary Table S2). Details of land use and cover change in the vicinity of KBS are given in Hamilton et al.48, and patterns in nutrient concentrations in local surface waters are further discussed in Hamilton62. Leaching estimates, modeled drainage, and data analysis Leaching was estimated at daily time steps and summarized as total leaching on a crop-year basis, defined from the date of planting or leaf emergence in a given year to the day prior to planting or emergence in the following year. TDP concentrations (mg L−1) of subsurface soil water were linearly interpolated between sampling dates during non-freezing periods (April–November) and over non-sampling periods (December–March) based on the preceding November and subsequent April samples. Daily rates of TDP leaching (kg ha−1) were calculated by multiplying concentration (mg L−1) by drainage rates (m3 ha−1 day−1) modeled by the Systems Approach for Land Use Sustainability (SALUS) model, a crop growth model that is well calibrated for KBS soil and environmental conditions. SALUS simulates yield and environmental outcomes in response to weather, soil, management (planting dates, plant population, irrigation, N fertilizer application, and tillage), and genetics63. The SALUS water balance sub-model simulates surface runoff, saturated and unsaturated water flow, drainage, root water uptake, and evapotranspiration during growing and non-growing seasons63. The SALUS model has been used in studies of evapotranspiration48,51,64 and nutrient leaching20,65,66,67 from KBS soils, and its predictions of growing-season evapotranspiration are consistent with independent measurements based on growing-season soil water drawdown53 and evapotranspiration measured by eddy covariance68. Phosphorus leaching was assumed insignificant on days when SALUS predicted no drainage. Volume-weighted mean TDP concentrations in leachate for each crop-year and for the entire 7-year study period were calculated as the total dissolved P leaching flux (kg ha−1) divided by the total drainage (m3 ha−1). One-way ANOVA with time (crop-year) as the fixed factor was conducted to compare total annual drainage rates, P leaching rates, volume-weighted mean TDP concentrations, and maximum aboveground biomass among the cropping systems over all seven crop-years as well as with TDP concentrations from local lakes, streams, and groundwater wells. When a significant (α = 0.05) difference was detected among the groups, we used the Tukey honest significant difference (HSD) post-hoc test to make pairwise comparisons among the groups. In the case of maximum aboveground biomass, we used the Tukey–Kramer method to make pairwise comparisons among the groups because the absence of poplar data after the 2013 harvest resulted in unequal sample sizes. We also used the Tukey–Kramer method to compare the frequency distributions of TDP concentrations in all of the soil leachate samples with concentrations in lakes, streams, and groundwater wells, since each sample category had very different numbers of measurements.
Other
Individual spreadsheets in “data table_leaching_dissolved organic carbon and nitrogen.xls” 1. annual precip_drainage 2. biomass_corn, perennial grasses 3. biomass_poplar 4. annual N leaching _vol-wtd conc 5. Summary_N leached 6. annual DOC leachin_vol-wtd conc 7. growing season length 8. correlation_nh4 VS no3 9. correlations_don VS no3_doc VS don Each spreadsheet is described below along with an explanation of variates. Note that ‘nan’ indicate data are missing or not available. First row indicates header; second row indicates units 1. Spreadsheet: annual precip_drainage Description: Precipitation measured from nearby Kellogg Biological Station (KBS) Long Term Ecological Research (LTER) Weather station, over 2009-2016 study period. Data shown in Figure 1; original data source for precipitation (https://lter.kbs.msu.edu/datatables/7). Drainage estimated from SALUS crop model. Note that drainage is percolation out of the root zone (0-125 cm). Annual precipitation and drainage values shown here are calculated for growing and non-growing crop periods. Variate Description year year of the observation crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” precip_G precipitation during growing period (milliMeter) precip_NG precipitation during non-growing period (milliMeter) drainage_G drainage during growing period (milliMeter) drainage_NG drainage during non-growing period (milliMeter) 2. Spreadsheet: biomass_corn, perennial grasses Description: Maximum aboveground biomass measurements from corn, switchgrass, miscanthus, native grass and restored prairie plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Data shown in Figure 2. Variate Description year year of the observation date day of the observation (mm/dd/yyyy) crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” replicate each crop has four replicated plots, R1, R2, R3 and R4 station stations (S1, S2 and S3) of samplings within the plot. For more details, refer to link (https://data.sustainability.glbrc.org/protocols/156) species plant species that are rooted within the quadrat during the time of maximum biomass harvest. See protocol for more information, refer to link (http://lter.kbs.msu.edu/datatables/36) For maize biomass, grain and whole biomass reported in the paper (weed biomass or surface litter are excluded). Surface litter biomass not included in any crops; weed biomass not included in switchgrass and miscanthus, but included in grass mixture and prairie. fraction Fraction of biomass biomass_plot biomass per plot on dry-weight basis (Grams_Per_SquareMeter) biomass_ha biomass (megaGrams_Per_Hectare) by multiplying column biomass per plot with 0.01 3. Spreadsheet: biomass_poplar Description: Maximum aboveground biomass measurements from poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Data shown in Figure 2. Note that poplar biomass was estimated from crop growth curves until the poplar was harvested in the winter of 2013-14. Variate Description year year of the observation method methods of poplar biomass sampling date day of the observation (mm/dd/yyyy) replicate each crop has four replicated plots, R1, R2, R3 and R4 diameter_at_ground poplar diameter (milliMeter) at the ground diameter_at_15cm poplar diameter (milliMeter) at 15 cm height biomass_tree biomass per plot (Grams_Per_Tree) biomass_ha biomass (megaGrams_Per_Hectare) by multiplying biomass per tree with 0.01 4. Spreadsheet: annual N leaching_vol-wtd conc Description: Annual leaching rate (kiloGrams_N_Per_Hectare) and volume-weighted mean N concentrations (milliGrams_N_Per_Liter) of nitrate (no3) and dissolved organic nitrogen (don) in the leachate samples collected from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for nitrogen leached and volume-wtd mean N concentration shown in Figure 3a and Figure 3b, respectively. Note that ammonium (nh4) concentration were much lower and often undetectable (<0.07 milliGrams_N_Per_Liter). Also note that in 2009 and 2010 crop-years, data from some replicates are missing. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” crop-year year of the observation replicate each crop has four replicated plots, R1, R2, R3 and R4 no3 leached annual leaching rates of nitrate (kiloGrams_N_Per_Hectare) don leached annual leaching rates of don (kiloGrams_N_Per_Hectare) vol-wtd no3 conc. Volume-weighted mean no3 concentration (milliGrams_N_Per_Liter) vol-wtd don conc. Volume-weighted mean don concentration (milliGrams_N_Per_Liter) 5. Spreadsheet: summary_N leached Description: Summary of total amount and forms of N leached (kiloGrams_N_Per_Hectare) and the percent of applied N lost to leaching over the seven years for corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for nitrogen amount leached shown in Figure 4a and percent of applied N lost shown in Figure 4b. Note the fraction of unleached N includes in harvest, accumulation in root biomass, soil organic matter or gaseous N emissions were not measured in the study. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” no3 leached annual leaching rates of nitrate (kiloGrams_N_Per_Hectare) don leached annual leaching rates of don (kiloGrams_N_Per_Hectare) N unleached N unleached (kiloGrams_N_Per_Hectare) in other sources are not studied % of N applied N lost to leaching % of N applied N lost to leaching 6. Spreadsheet: annual DOC leachin_vol-wtd conc Description: Annual leaching rate (kiloGrams_Per_Hectare) and volume-weighted mean N concentrations (milliGrams_Per_Liter) of dissolved organic carbon (DOC) in the leachate samples collected from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for DOC leached and volume-wtd mean DOC concentration shown in Figure 5a and Figure 5b, respectively. Note that in 2009 and 2010 crop-years, water samples were not available for DOC measurements. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” crop-year year of the observation replicate each crop has four replicated plots, R1, R2, R3 and R4 doc leached annual leaching rates of nitrate (kiloGrams_Per_Hectare) vol-wtd doc conc. volume-weighted mean doc concentration (milliGrams_Per_Liter) 7. Spreadsheet: growing season length Description: Growing season length (days) of corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in the Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Date shown in Figure S2. Note that growing season is from the date of planting or emergence to the date of harvest (or leaf senescence in case of poplar). Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” year year of the observation growing season length growing season length (days) 8. Spreadsheet: correlation_nh4 VS no3 Description: Correlation of ammonium (nh4+) and nitrate (no3-) concentrations (milliGrams_N_Per_Liter) in the leachate samples from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2013-2015. Data shown in Figure S3. Note that nh4+ concentration in the leachates was very low compared to no3- and don concentration and often undetectable in three crop-years (2013-2015) when measurements are available. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” date date of the observation (mm/dd/yyyy) replicate each crop has four replicated plots, R1, R2, R3 and R4 nh4 conc nh4 concentration (milliGrams_N_Per_Liter) no3 conc no3 concentration (milliGrams_N_Per_Liter) 9. Spreadsheet: correlations_don VS no3_doc VS don Description: Correlations of don and nitrate concentrations (milliGrams_N_Per_Liter); and doc (milliGrams_Per_Liter) and don concentrations (milliGrams_N_Per_Liter) in the leachate samples of corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2013-2015. Data of correlation of don and nitrate concentrations shown in Figure S4 a and doc and don concentrations shown in Figure S4 b. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” year year of the observation don don concentration (milliGrams_N_Per_Liter) no3 no3 concentration (milliGrams_N_Per_Liter) doc doc concentration (milliGrams_Per_Liter) More>>
The COVID-19 pandemic has dramatically altered family life in the United States. Over the long duration of the pandemic, parents had to adapt to shifting work conditions, virtual schooling, the closure of daycare facilities, and the stress of not only managing households without domestic and care supports but also worrying that family members may contract the novel coronavirus. Reports early in the pandemic suggest that these burdens have fallen disproportionately on mothers, creating concerns about the long-term implications of the pandemic for gender inequality and mothers’ well-being. Nevertheless, less is known about how parents’ engagement in domestic labor and paid work has changed throughout the pandemic, what factors may be driving these changes, and what the long-term consequences of the pandemic may be for the gendered division of labor and gender inequality more generally. <br /><br />The Study on U.S. Parents’ Divisions of Labor During COVID-19 (SPDLC) collects longitudinal survey data from partnered U.S. parents that can be used to assess changes in parents’ divisions of domestic labor, divisions of paid labor, and well-being throughout and after the COVID-19 pandemic. The goal of SPDLC is to understand both the short- and long-term impacts of the pandemic for the gendered
division of labor, work-family issues, and broader patterns of gender inequality. <br /><br />Survey data for this study is collected using Prolifc (www.prolific.co), an opt-in online platform designed to facilitate scientific research. The sample is comprised U.S. adults who were residing with a romantic partner and at least one biological child (at the time of entry into the study). In each survey, parents answer questions about both themselves and their partners. Wave 1 of SPDLC was conducted in April 2020, and parents who participated in Wave 1 were asked about their division of labor both prior to (i.e., early March 2020) and one month after the pandemic began. Wave 2 of SPDLC was collected in November 2020. Parents who participated in Wave 1 were invited to participate again in Wave 2, and a new cohort of parents was also recruited to participate in the Wave 2 survey. Wave 3 of SPDLC was collected in October 2021. Parents who participated in either of the first two waves were invited to participate again in Wave 3, and another new cohort of parents was also recruited to participate in the Wave 3 survey. This research design (follow-up survey of panelists and new cross-section of parents at each wave) will continue through 2024, culminating in six waves of data spanning the period from March 2020 through October 2024. An estimated total of approximately 6,500 parents will be surveyed at least once throughout the duration of the study. <br /><br />SPDLC data will be released to the public two years after data is collected; Waves 1 and 2 are currently publicly available. Wave 3 will be publicly available in October 2023, with subsequent waves becoming available yearly. Data will be available to download in both SPSS (.sav) and Stata (.dta) formats, and the following data files will be available: (1) a data file for each individual wave, which contains responses from all participants in that wave of data collection, (2) a longitudinal panel data file, which contains longitudinal follow-up data from all available waves, and (3) a repeated cross-section data file, which contains the repeated cross-section data (from new respondents at each wave) from all available waves. Codebooks for each survey wave and a detailed user guide describing the data are also available.
Methods
Response Rates: Of the 1,157 parents who participated in Wave 1, 828 (72%) also participated in the Wave 2 study. Presence of Common Scales: The following established scales are included in the survey:<br /><ul><li><b>Self-Efficacy</b>, adapted from Pearlin's mastery scale (Pearlin et al., 1981) and the Rosenberg self-esteem scale (Rosenberg, 2015) and taken from the American Changing Lives Survey</li><li><b>Communication with Partner</b>, taken from the Marriage and Relationship Survey (Lichter & Carmalt, 2009)<br /></li><li><b>Gender Attitudes</b>, taken from the National Survey of Families and Households (Sweet & Bumpass, 1996)<br /></li><li><b>Depressive Symptoms </b>(CES-D-10)</li><li><b>Stress</b>, measured using Cohen's Perceived Stress Scale (Cohen, Kamarck, & Mermelstein, 1983)<br /></li></ul>Full details about these scales and all other items included in the survey can be found in the user guide and codebook<br /> The second wave of the SPDLC was fielded in November 2020 in two stages. In the first stage, all parents who participated in W1 of the SPDLC and who continued to reside in the United States were re-contacted and asked to participate in a follow-up survey. The W2 survey was posted on Prolific, and messages were sent via Prolific’s messaging system to all previous participants. Multiple follow-up messages were sent in an attempt to increase response rates to the follow-up survey. Of the 1,157 respondents who completed the W1 survey, 873 at least started the W2 survey. Data quality checks were employed in line with best practices for online surveys (e.g., removing respondents who did not complete most of the survey or who did not pass the attention filters). After data quality checks, 5.2% of respondents were removed from the sample, resulting in a final sample size of 828 parents (a response rate of 72%). <br /><br />In the second stage, a new sample of parents was recruited. New parents had to meet the same sampling criteria as in W1 (be at least 18 years old, reside in the United States, reside with a romantic partner, and be a parent living with at least one biological child). Also similar to the W1 procedures, we oversampled men, Black individuals, individuals who did not complete college, and individuals who identified as politically conservative to increase sample diversity. A total of 1,207 parents participated in the W2 survey. Data quality checks led to the removal of 5.7% of the respondents, resulting in a final sample size of new respondents at Wave 2 of 1,138 parents. <br /><br />In both stages, participants were informed that the survey would take approximately 20 minutes to complete. All panelists were provided monetary compensation in line with Prolific’s compensation guidelines, which require that all participants earn above minimum wage for their time participating in studies. <br /> To be included in SPDLC, respondents had to meet the following sampling criteria at the time they enter the study: (a) be at least 18 years old, (b) reside in the United States, (c) reside with a romantic partner (i.e., be married or cohabiting), and (d) be a parent living with at least one biological child. Follow-up respondents must be at least 18 years old and reside in the United States, but may experience changes in relationship and resident parent statuses. Smallest Geographic Unit: U.S. State <p>This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. In accordance with this license, all users of these data must give appropriate credit to the authors in any papers, presentations, books, or other works that use the data. A suggested citation to provide attribution for these data is included below: <br /><br />Carlson, Daniel L. and Richard J. Petts. 2022. Study on U.S. Parents’ Divisions of Labor During COVID-19 User Guide: Waves 1-2. </p>
Other
To help provide estimates that are more representative of U.S. partnered parents, the SPDLC includes sampling weights. Weights can be included in statistical analyses to make estimates from the SPDLC sample representative of U.S. parents who reside with a romantic partner (married or cohabiting) and a child aged 18 or younger based on age, race/ethnicity, and gender. National estimates for the age, racial/ethnic, and gender profile of U.S. partnered parents were obtained using data from the 2020 Current Population Survey (CPS). Weights were calculated using an iterative raking method, such that the full sample in each data file matches the nationally representative CPS data in regard to the gender, age, and racial/ethnic distributions within the data. This variable is labeled <b>CPSweightW2</b> in the Wave 2 dataset, and <b>CPSweightLW2</b> in the longitudinal dataset (which includes Waves 1 and 2). There is not a weight variable included in the W1-W2 repeated cross-section data file.<br /> More>>
DeBell, Matthew. The Visible Cash Effect with Prepaid Incentives: Evidence for Data Quality, Response Rates, Generalizability, and Cost. Journal of Survey Statistics and Methodology . Web. doi:10.1093/jssam/smac032.
DeBell, Matthew. The Visible Cash Effect with Prepaid Incentives: Evidence for Data Quality, Response Rates, Generalizability, and Cost. Journal of Survey Statistics and Methodology, (). https://doi.org/10.1093/jssam/smac032
DeBell, Matthew.
"The Visible Cash Effect with Prepaid Incentives: Evidence for Data Quality, Response Rates, Generalizability, and Cost". Journal of Survey Statistics and Methodology (). Country unknown/Code not available: Oxford University Press. https://doi.org/10.1093/jssam/smac032.https://par.nsf.gov/biblio/10383031.
@article{osti_10383031,
place = {Country unknown/Code not available},
title = {The Visible Cash Effect with Prepaid Incentives: Evidence for Data Quality, Response Rates, Generalizability, and Cost},
url = {https://par.nsf.gov/biblio/10383031},
DOI = {10.1093/jssam/smac032},
abstractNote = {Abstract A prior study found that mailing prepaid incentives with $5 cash visible from outside the envelope increased the response rate to a mail survey by 4 percentage points compared to cash that was not externally visible. This “visible cash effect” suggests opportunities to improve survey response at little or no cost, but many unknowns remain. Among them: Does the visible cash effect generalize to different survey modes, respondent burdens, and cash amounts? Does it differ between fresh samples and reinterview samples? Does it affect data quality or survey costs? This article examines these questions using two linked studies where incentive visibility was randomized in a large probability sample for the American National Election Studies. The first study used $10 incentives with invitations to a long web questionnaire (median 71 minutes, n = 17,849). Visible cash increased response rates in a fresh sample for both screener and extended interview response (by 6.7 and 4.8 percentage points, respectively). Visible cash did not increase the response rate in a reinterview sample where the baseline reinterview response rate was very high (72 percent). The second study used $5 incentives with invitations to a mail-back paper questionnaire (n = 8,000). Visible cash increased the response rate in a sample of prior nonrespondents by 4.0 percentage points (from 31.5 to 35.5), but it did not increase the response rate in a reinterview sample where the baseline reinterview rate was very high (84 percent). In the two studies, several aspects of data quality were investigated, including speeding, non-differentiation, item nonresponse, nonserious responses, noncredible responses, sample composition, and predictive validity; no adverse effects of visible cash were detected, and sample composition improved marginally. Effects on survey costs were either negligible or resulted in net savings. Accumulated evidence now shows that visible cash can increase incentives’ effectiveness in several circumstances.},
journal = {Journal of Survey Statistics and Methodology},
publisher = {Oxford University Press},
author = {DeBell, Matthew},
}