skip to main content


Title: A new understanding of why the aurora has explosive characteristics
ABSTRACT

This article describes a new understanding of the explosive nature of auroras, called auroral substorms, on the basis of a series of processes, from power supply (dynamo), circuit/current, and dissipation (auroral substorms) – the electric current approach, in which the magnetosphere or more specifically the primary magnetosphere-ionosphere coupling system (the primary M-I system) plays a crucial role. The primary M-I system has an anomaly; it cannot dissipate the dynamo power much for about 1 h after the dynamo power becomes above 1011 w. This anomaly is due to a low conductivity of the quiet-time ionosphere to dissipate increasing power. Thus, the power is accumulated in the inner magnetosphere (at about 6 Re; Re = earth’s radius) as magnetic energy, inflating the inner magnetosphere. When the accumulated energy reaches to about 1016 J, the primary M-I system seems to become unstable and unload impulsively the accumulated magnetic energy, deflating the magnetosphere. This deflating process generates the secondly M-I system, which is associated with an electric field 5–50 mV/m and field-aligned currents, ionizing the ionosphere and increasing the conductivity. Therefore, the primary M-I system can perform like an ordinary electrical system. It is this particular nature that exhibits explosive auroral displays. This paper describes systematically and semiquantitatively key points of this series of processes based on a few decades of work. The electric current approach is rather ‘new’ in substorm research and thus is rudimental at its development stage, so that n crucial issues are mentioned for future studies at the end.

 
more » « less
NSF-PAR ID:
10383032
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
518
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3286-3300
Size(s):
["p. 3286-3300"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    On 11 June 2017, a sudden solar wind dynamic pressure decrease occurred at 1437 UT according to the OMNI solar wind data. The solar wind velocity did not change significantly, while the density dropped from 42 to 10 cm−3in a minute. The interplanetary magnetic fieldBZwas weakly northward during the event, while theBYchanged from positive to negative. Using the University of Michigan Block Adaptive Tree Solarwind Roe Upwind Scheme global magnetohydrodynamic code, the global responses to the decrease in the solar wind dynamic pressure were studied. The simulation revealed that the magnetospheric expansion consisted of two phases similar to the responses during magnetospheric compression, namely, a negative preliminary impulse and a negative main impulse phase. The simulated plasma flow and magnetic fields reasonably reproduced the Time History of Events and Macroscale Interactions during Substorms and Magnetospheric Multiscale spacecraft in situ observations. Two separate pairs of dawn‐dusk vortices formed during the expansion of the magnetosphere, leading to two separate pairs of field‐aligned current cells. The effects of the flow and auroral precipitation on the ionosphere‐thermosphere (I‐T) system were investigated using the Global Ionosphere Thermosphere Model driven by simulated ionospheric electrodynamics. The perturbations in the convection electric fields caused enhancements in the ion and electron temperatures. This study shows that, like the well‐studied sudden solar wind pressure increases, sudden pressure decreases can have large impacts in the coupled I‐T system. In addition, the responses of the I‐T system depend on the initial convection flows and field‐aligned current profiles before the solar wind pressure perturbations.

     
    more » « less
  2. Abstract

    The extreme substorm event on 5 April 2010 (THEMIS AL = −2,700 nT, called supersubstorm) was investigated to examine its driving processes, the aurora current system responsible for the supersubstorm, and the magnetosphere‐ionosphere‐thermosphere (M‐I‐T) responses. An interplanetary shock created shock aurora, but the shock was not a direct driver of the supersubstorm onset. Instead, the shock with a large southward IMF strengthened the growth phase with substantially larger ionosphere currents, more rapid equatorward motion of the auroral oval, larger ionosphere conductance, and more elevated magnetotail pressure than those for the growth phase of classical substorms. The auroral brightening at the supersubstorm onset was small, but the expansion phase had multistep enhancements of unusually large auroral brightenings and electrojets. The largest activity was an extremely large poleward boundary intensification (PBI) and subsequent auroral streamer, which started ~20 min after the substorm auroral onset during a steady southward IMFBzand elevated dynamic pressure. Those were associated with a substorm current wedge (SCW), plasma sheet flow, relativistic particle injection and precipitation down to the D‐region, total electron content (TEC), conductance, and neutral wind in the thermosphere, all of which were unusually large compared to classical substorms. The SCW did not extend over the entire nightside auroral activity but was localized azimuthally to a few 100 km in the ionosphere around the PBI and streamer. These results reveal the importance of localized magnetotail reconnection for releasing large energy accumulation that can affect geosynchronous satellites and produce the extreme M‐I‐T responses.

     
    more » « less
  3. Abstract

    Energetic particles of magnetospheric origin constantly strike the Earth’s upper atmosphere in the polar regions, producing optical emissions known as the aurora. The most spectacular auroral displays are associated with recurrent events called magnetospheric substorms (aka auroral substorms). Substorms are initiated in the nightside magnetosphere on closed magnetic field lines. As a consequence, it is generally thought that auroral substorms should occur in both hemispheres on the same field line (i.e., magnetically conjugated). However, such a hypothesis has not been verified statistically. Here, by analyzing 2659 auroral substorms acquired by the Ultraviolet Imager on board the NASA satellite “Polar”, we have discovered surprising evidence that the averaged location for substorm onsets is not conjugate but shows a geographic preference that cannot be easily explained by current substorm theories. In the Northern Hemisphere (NH) the auroral substorms occur most frequently in Churchill, Canada (~90°W) and Khatanga, Siberia (~100°E), up to three times as often as in Iceland (~22°W). In the Southern Hemisphere (SH), substorms occur more frequently over a location in the Antarctic ocean (~120°E), up to ~4 times more than over the Antarctic Continent. Such a large difference in the longitudinal distribution of north and south onset defies the common belief that substorms in the NH and SH should be magnetically conjugated. A further analysis indicates that these substorm events occurred more frequently when more of the ionosphere was dark. These geographic areas also coincide with regions where the Earth’s magnetic field is largest. These facts suggest that auroral substorms occur more frequently, and perhaps more intensely, when the ionospheric conductivity is lower. With much of the magnetotail energy coming from the solar wind through merging of the interplanetary and Earth’s magnetic field, it is generally thought that the occurrence of substorms is externally controlled by the solar wind and plasma instability in the magnetotail. The present study results provide a strong argument that the ionosphere plays a more active role in the occurrence of substorms.

     
    more » « less
  4. Abstract

    During geomagnetic storms and substorms, the magnetosphere and ionosphere are strongly coupled by precipitating magnetospheric electrons from the Earth's plasma sheet and driven by both magnetospheric and ionospheric processes. Magnetospheric wave activity initiates electron precipitation, and the ionosphere and upper atmosphere further facilitate this process by enhancing the value of precipitated energy fluxes via connection of two magnetically conjugate regions and multiple atmospheric reflections. This paper focuses on the resulting electron energy fluxes and affiliated height‐integrated Pedersen and Hall conductances in the auroral regions produced by multiple atmospheric reflections during the 17 March 2013 geomagnetic storm and their effects on the inner magnetospheric electric field and ring current. Our study is based on the magnetically and electrically self‐consistent Rice Convection Model‐Equilibrium of the inner magnetosphere with SuperThermal Electron Transport modified electron energy fluxes that take into account the electron energy interplay between the two magnetically conjugate ionospheres. SuperThermal Electron Transport‐modified energy flux in the Rice Convection Model‐Equilibrium leads to a significant difference in the global conductance pattern, ionospheric electric field formation, Birkeland current structure, ring current energization and its energy content, subauroral polarization drifts intensifications and their spatial locations, interchange instability redistribution, and overall energy interplay on the global scale.

     
    more » « less
  5. Abstract

    The ionospheric conductance is the major quantity that determines the interaction of the magnetosphere with the ionosphere, where the magnetosphere is the large region of space affected by Earth’s geomagnetic field, and the ionosphere is its electrically conducting inner boundary, lying right on the edge of the atmosphere. Storms and substorms in space dissipate their energy through ionospheric currents, which heat the atmosphere and disrupt satellite orbits. The ionospheric conductance has, heretofore, been estimated using the staticized physics known as electrostatic theory, which finds that it can be computed by integrating the zero-frequency conductivity along the lines of Earth’s geomagnetic field. In this work we test this supposition by deriving an electromagnetic solution for collisional plasma, and applying it to obtain a first-ever fully-electromagnetic calculation of ionospheric conductance. We compare the results to the field line integrated conductivity, and find significant differences on all scales investigated. We find short-wavelength, mode-mixing, and wave-admittance effects that were completely unexpected. When this theoretical result is matched with recent observational findings for the scale of the magnetosphere-ionosphere coupling-interaction, there results a situation where small- to intermediate-scale effects really may contribute to global modeling of the Sun-Earth system.

     
    more » « less