The goal of this project is to test the overarching hypothesis that positive feedback mechanisms involving changes in seasonal cycles that diminish N availability to plants such that plant N demand is not met by soil N availability in northern forests. Specifically, we hypothesize that increasing N demand by plants (induced by increasing temperatures, longer growing seasons, and other environmental changes) leads to greater N resorption by trees in autumn, increased C:N in litter, and greater net immobilization of N by soil microbes in the following spring. However, the timing of snowmelt and soil freezing in spring may further affect net mineralization and N availability for plants. These hypotheses are being tested with a combination of observational, experimental, and modeling approaches at Hubbard Brook Experimental Forest in New Hampshire: 1) measurements at 14 previously established sites along an elevation/aspect climate gradient; 2) litter and snow manipulation experiments at six sites along the climate gradient to create variation in soil climate conditions and microbial N immobilization during spring. We leveraged 14 sites previously established along an elevation and aspect-driven climate gradient at Hubbard Brook as a “natural climate experiment" to test our hypothesis that a positive feedback between N cycling during fall senescence and spring contributes to declining N availability in northern forests. This elevation gradient encompasses variation in mean annual air temperature of ~2.5 °C that is similar to the change projected to occur with climate change over the next 50–100 years in the northeastern U.S. There is relatively little variation in soils along the gradient. We are utilizing three sites at higher elevation (~550-660 m, north facing) and three sites at lower elevation (~375-500 m, south facing) for the litter and snow manipulation experiments to maximize the differences in temperature among the 14 sites. Litterbox manipulation: The objective of the litterfall manipulation experiment is to determine whether increases in autumn litter C:N ratios contribute to greater N immobilization by microbes and reductions in net mineralization and plant N uptake in spring, and ultimately, N oligotrophication in northern forest ecosystems. We applied early (low C:N litter that is lost from from hardwood foliage in the first two weeks of autumn) and late (high C:N litter that falls in the last two weeks of autumn) season litter in October 2022 that was collected in fall 2021 at rates equal to standing mass of litter (300 g m2). We also applied native litter that was collected from the forest floor of each intensive site to represent background levels of C:N in litter samples. This litter was applied to one litterbox at each of the six intensive sites. Following application of litter, we installed deer netting around and on top of each of the litterboxes to eliminate litter loss from wind. Soil samples were collected from these plots in November 2021, April 2022, May 2022, June 2022, November 2022, April 2023, May 2023, June 2023 and anlalysed for microbial biomass and activity, as described in the methods section. Snow manipulation: The objective of the snow manipulation experiment is to determine whether the timing of spring snowmelt, length of the spring, and soil freezing in spring affect microbial N immobilization, hydrologic losses, net mineralization, and plant N uptake. The snow manipulation treatment was conducted in the spring of 2022 and 2023. We manually halved (Removal treatment) or doubled (Addition treatment) snow water equivalent (SWE) in experimental plots in March of 2022 and 2023 to accelerate or delay by an average of one week, respectively, the onset of spring snowmelt. Soil Samples were collected from these plots in November 2021, April 2022, May 2022, June 2022, November 2022, April 2023, May 2023, June 2023 and anlalysed for microbial biomass and activity, as described in the methods section. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.
more »
« less
Latitudinal shifts of soil microbial biomass seasonality
Abstract Soil microbes ultimately drive the mineralization of soil organic carbon and thus ecosystem functions. We compiled a dataset of the seasonality of microbial biomass carbon (MBC) and developed a semi-mechanistic model to map monthly MBC across the globe. MBC exhibits an equatorially symmetric seasonality between the Northern and Southern Hemispheres. In the Northern Hemisphere, MBC peaks in autumn and is minimal in spring at low latitudes (<25°N), peaks in the spring and is minimal in autumn at mid-latitudes (25°N to 50°N), while peaks in autumn and is minimal in spring at high latitudes (>50°N). This latitudinal shift of MBC seasonality is attributed to an interaction of soil temperature, soil moisture, and substrate availability. The MBC seasonality is inconsistent with patterns of heterotrophic respiration, indicating that MBC as a proxy for microbial activity is inappropriate at this resolution. This study highlights the need to explicitly represent microbial physiology in microbial models. The interactive controls of environments and substrate on microbial seasonality provide insights for better representing microbial mechanisms in simulating ecosystem functions at the seasonal scale.
more »
« less
- Award ID(s):
- 2145130
- PAR ID:
- 10383157
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- PNAS Nexus
- Volume:
- 1
- Issue:
- 5
- ISSN:
- 2752-6542
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The goal of this project is to test the overarching hypothesis that positive feedback mechanisms involving changes in seasonal cycles that diminish N availability to plants such that plant N demand is not met by soil N availability in northern forests. Specifically, we hypothesize that increasing N demand by plants (induced by increasing temperatures, longer growing seasons, and other environmental changes) leads to greater N resorption by trees in autumn, increased C:N in litter, and greater net immobilization of N by soil microbes in the following spring. However, the timing of snowmelt and soil freezing in spring may further affect net mineralization and N availability for plants. These hypotheses are being tested with a combination of observational, experimental, and modeling approaches at Hubbard Brook Experimental Forest in New Hampshire: 1) measurements at 14 previously established sites along an elevation/aspect climate gradient; 2) litter and snow manipulation experiments at six sites along the climate gradient to create variation in soil climate conditions and microbial N immobilization during spring. We leveraged 14 sites previously established along an elevation and aspect-driven climate gradient at Hubbard Brook as a “natural climate experiment" to test our hypothesis that a positive feedback between N cycling during fall senescence and spring contributes to declining N availability in northern forests. This elevation gradient encompasses variation in mean annual air temperature of ~2.5 °C that is similar to the change projected to occur with climate change over the next 50–100 years in the northeastern U.S. There is relatively little variation in soils along the gradient. We are utilizing three sites at higher elevation (~550-660 m, north facing) and three sites at lower elevation (~375-500 m, south facing) for the litter and snow manipulation experiments to maximize the differences in temperature among the 14 sites. Litterbox manipulation: The objective of the litterfall manipulation experiment is to determine whether increases in autumn litter C:N ratios contribute to greater N immobilization by microbes and reductions in net mineralization and plant N uptake in spring, and ultimately, N oligotrophication in northern forest ecosystems. We applied early (low C:N litter that is lost from from hardwood foliage in the first two weeks of autumn) and late (high C:N litter that falls in the last two weeks of autumn) season litter in October 2022 that was collected in fall 2021 at rates equal to standing mass of litter (300 g m2). We also applied native litter that was collected from the forest floor of each intensive site to represent background levels of C:N in litter samples. This litter was applied to one litterbox at each of the six intensive sites. Following application of litter, we installed deer netting around and on top of each of the litterboxes to eliminate litter loss from wind. Soil samples were collected from these plots in November 2021, April 2022, May 2022, June 2022, November 2022, April 2023, May 2023, June 2023 and anlalysed for Nitrogen mineralization and nitrification, as described in the methods section. Snow manipulation: The objective of the snow manipulation experiment is to determine whether the timing of spring snowmelt, length of the spring, and soil freezing in spring affect microbial N immobilization, hydrologic losses, net mineralization, and plant N uptake. The snow manipulation treatment was conducted in the spring of 2022 and 2023. We manually halved (Removal treatment) or doubled (Addition treatment) snow water equivalent (SWE) in experimental plots in March of 2022 and 2023 to accelerate or delay by an average of one week, respectively, the onset of spring snowmelt. Soil Samples were collected from these plots in November 2021, April 2022, May 2022, June 2022, November 2022, April 2023, May 2023, June 2023 and analysed for Nitrogen mineralization and nitrification, as described in the methods section. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
-
Applications of remote sensing data to monitor bird migration usher a new understanding of magnitude and extent of movements across entire flyways. Millions of birds move through the western USA, yet this region is understudied as a migratory corridor. Characterizing movements in the Pacific Flyway offers a unique opportunity to study complementary patterns to those recently highlighted in the Atlantic and Central Flyways. We use weather surveillance radar data from spring and autumn (1995–2018) to examine migrants' behaviours in relation to winds in the Pacific Flyway. Overall, spring migrants tended to drift on winds, but less so at northern latitudes and farther inland from the Pacific coastline. Relationships between winds and autumn flight behaviours were less striking, with no latitudinal or coastal dependencies. Differences in the preferred direction of movement (PDM) and wind direction predicted drift patterns during spring and autumn, with increased drift when wind direction and PDM differences were high. We also observed greater total flight activity through the Pacific Flyway during the spring when compared with the autumn. Such complex relationships among birds’ flight strategies, winds and seasonality highlight the variation within a migration system. Characterizations at these scales complement our understanding of strategies to clarify aerial animal movements.more » « less
-
Abstract Microbial biomass is known to decrease with soil drying and to increase after rewetting due to physiological assimilation and substrate limitation under fluctuating moisture conditions, but how the effects of changing moisture conditions vary between dry and wet environments is unclear. Here, we conducted a meta‐analysis to assess the effects of elevated and reduced soil moisture on microbial biomass C (MBC) and microbial biomass N (MBN) across a broad range of forest sites between dry and wet regions. We found that the influence of both elevated and reduced soil moisture on MBC and MBN concentrations in forest soils was greater in dry than in wet regions. The influence of altered soil moisture on MBC and MBN concentrations increased significantly with the manipulation intensity but decreased with the length of experimental period, with a dramatic increase observed under a very short‐term precipitation pulse. Moisture effect did not differ between coarse‐textured and fine‐textured soils. Precipitation intensity, experimental duration, and site standardized precipitation index (dry or wet climate) were more important than edaphic factors (i.e., initial water content, bulk density, and clay content) in determining microbial biomass in response to altered moisture in forest soils. Different responses of microbial biomass in forest soils between dry and wet regions should be incorporated into models to evaluate how changes in the amount, timing, and intensity of precipitation affect soil biogeochemical processes.more » « less
-
Abstract The timing and progression of the spring thaw transition in high northern latitudes (HNL) coincides with warmer temperatures and landscape thawing, promoting increased soil moisture and growing season onset of gross primary productivity (GPP), heterotrophic respiration (HR), and evapotranspiration (ET). However, the relative order and spatial pattern of these events is uncertain due to vast size and remoteness of the HNL. We utilized satellite environmental data records (EDRs) derived from complementary passive microwave and optical sensors to assess the progression of spring transition events across Alaska and Northern Canada from 2016 to 2020. Selected EDRs included land surface and soil freeze‐thaw status, solar‐induced chlorophyll fluorescence (SIF) signifying canopy photosynthesis, root zone soil moisture (RZSM), and GPP, HR, and ET as indicators of ecosystem carbon and water‐energy fluxes. The EDR spring transition maps showed thawing as a precursor to rising RZSM and growing season onset. Thaw timing was closely associated with ecosystem activation from winter dormancy, including seasonal increases in SIF, GPP, and ET. The HR onset occurred closer to soil thawing and prior to GPP activation, reducing spring carbon (CO2) sink potential. The mean duration of the spring transition spanned ∼6 ± 1.5 weeks between initial and final onset events. Spring thaw timing and maximum RZSM were closely related to active layer thickness in HNL permafrost zones, with deeper active layers showing generally earlier thawing and greater RZSM. Our results confirm the utility of combined satellite EDRs for regional monitoring and better understanding of the complexity of the spring transition.more » « less
An official website of the United States government
