Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Microbial processes are crucial in producing and oxidizing biological methane (CH4) in natural wetlands. Therefore, modeling methanogenesis and methanotrophy is advantageous for accurately projecting CH4cycling. Utilizing the CLM‐Microbe model, which explicitly represents the growth and death of methanogens and methanotrophs, we demonstrate that genome‐enabled model parameterization improves model performance in four natural wetlands. Compared to the default model parameterization against CH4flux, genomic‐enabled model parameterization added another contain on microbial biomass, notably enhancing the precision of simulated CH4flux. Specifically, the coefficient of determination (R2) increased from 0.45 to 0.74 for Sanjiang Plain, from 0.78 to 0.89 for Changbai Mountain, and from 0.35 to 0.54 for Sallie's Fen, respectively. A drop inR2was observed for the Dajiuhu nature wetland, primarily caused by scatter data points. Theil's coefficient (U) and model efficiency (ME) confirmed the model performance from default parameterization to genome‐enabled model parameterization. Compared with the model solely calibrated to surface CH4flux, additional constraints of functional gene data led to better CH4seasonality; meanwhile, genome‐enabled model parameterization established more robust associations between simulated CH4production rates and environmental factors. Sensitivity analysis underscored the pivotal role of microbial physiology in governing CH4flux. This genome‐enabled model parameterization offers a valuable promise to integrate fast‐cumulating genomic data with CH4models to better understand microbial roles in CH4in the era of climate change.more » « less
- 
            Abstract Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.more » « less
- 
            ABSTRACT The current soil carbon paradigm puts particulate organic carbon (POC) as one of the major components of soil organic carbon worldwide, highlighting its pivotal role in carbon mitigation. In this study, we compiled a global dataset of 3418 data points of POC concentration in soils and applied empirical modeling and machine learning algorithms to investigate the spatial variation in POC concentration and its controls. The global POC concentration in topsoil (0–30 cm) is estimated as 3.02 g C/kg dry soil, exhibiting a declining trend from polar regions to the equator. Boreal forests contain the highest POC concentration, averaging at 4.58 g C/kg dry soil, whereas savannas exhibit the lowest at 1.41 g C/kg dry soil. We developed a global map of soil POC density in soil profiles of 0‐30 cm and 0–100 cm with an empirical model. The global stock of POC is 158.15 Pg C for 0–30 cm and 222.75 Pg C for 0–100 cm soil profiles with a substantial spatial variation. Analysis with a machine learning algorithm concluded the predominate controls of edaphic factors (i.e., bulk density and soil C content) on POC concentration across biomes. However, the secondary controls vary among biomes, with solid climate controls in grassland, pasture, and shrubland, while strong vegetation controls in forests. The biome‐level estimates and maps of POC density provide a benchmark for modeling C fractions in soils; the various controls on POC suggest incorporating biological and physiochemical mechanisms in soil C models to assess and forecast the soil POC dynamics in response to global change.more » « less
- 
            Abstract Climate and land management affect nutrient cycling in grassland ecosystems. We aimed to understand whether temperate and tropical grasslands differ in terms of soil organic carbon (SOC), nitrogen (N), and phosphorus (P) concentrations, and their C:N:P stoichiometric ratios in grazed and ungrazed natural grasslands and pastures. For this, we used a meta-analysis approach (1296 records, 241 papers), and regression models to explain the observed patterns in terms of mean annual precipitation (MAP), mean annual temperature (MAT), altitude, and latitude. SOC, N, and P concentrations were higher in temperate regions than in tropical ones, and they negatively correlated with MAT and MAP. The grassland type effect was more significant for tropical regions. In tropical regions, soil C:N ratios were higher in ungrazed than in grazed pastures, and soil N:P ratios in ungrazed sites were higher in pastures than in natural grasslands. Grazing increases soil N and SOC for natural grasslands in temperate regions. Our findings suggest that soil stoichiometric C:N:P stoichiometric signatures in grasslands differed between tropical and temperate regions on a global scale. P is a key element in regulation and restriction on soil C and N cycling in tropical regions but less in the temperate ones. Our findings suggest the direction of effects of grazing or grassland type on C:N:P stoichiometric signature. Since imbalances in soil stoichiometric ratios may have implications for ecosystem functioning, the assessment of these patterns could serve as a valuable tool for management and conservation of grasslands and pastures in both tropical and temperate regions.more » « less
- 
            Abstract The theory of microbial stoichiometry can predict the proportional coupling of microbial assimilation of carbon (C), nitrogen (N), and phosphorus (P). The proportional coupling is quantified by the homeostasis value (H). Covariation of H values for C, N, and P indicates that microbial C, N, and P assimilation are coupled. Here, we used a global dataset to investigate the spatiotemporal dynamics of H values of microbial C, N, and P across biomes. We found that land use and management led to the decoupling of P from C and N metabolism over time and across space. Results from structural equation modeling revealed that edaphic factors dominate the microbial homeostasis of P, while soil elemental concentrations dominate the homeostasis of C and N. This result was further confirmed using the contrasting factors on microbial P vs. microbial C and N derived from a machine-learning algorithm. Overall, our study highlights the impacts of management on shifting microbial roles in nutrient cycling.more » « less
- 
            Abstract Recent studies have reported worldwide vegetation suppression in response to increasing atmospheric vapor pressure deficit (VPD). Here, we integrate multisource datasets to show that increasing VPD caused by warming alone does not suppress vegetation growth in northern peatlands. A site-level manipulation experiment and a multiple-site synthesis find a neutral impact of rising VPD on vegetation growth; regional analysis manifests a strong declining gradient of VPD suppression impacts from sparsely distributed peatland to densely distributed peatland. The major mechanism adopted by plants in response to rising VPD is the “open” water-use strategy, where stomatal regulation is relaxed to maximize carbon uptake. These unique surface characteristics evolve in the wet soil‒air environment in the northern peatlands. The neutral VPD impacts observed in northern peatlands contrast with the vegetation suppression reported in global nonpeatland areas under rising VPD caused by concurrent warming and decreasing relative humidity, suggesting model improvement for representing VPD impacts in northern peatlands remains necessary.more » « less
- 
            Abstract Bacteria and fungi possess distinct physiological traits. Their macroecology is vital for ecosystem functioning such as carbon cycling. However, bacterial and fungal biogeography and underlying mechanisms remain elusive. In this study, we investigated bacterial versus fungal macroecology by integrating a microbial‐explicit model—CLM‐Microbe—with measured fungal (FBC) and bacterial biomass carbon (BBC) from 34 NEON sites. The distribution of FBC, BBC, and FBC: BBC (F:B) ratio was well simulated across sites, with variations in 99% (P < 0.001), 97% (P < 0.001), and 99% (P < 0.001) being explained by the CLM‐Microbe model, respectively. We found stronger biogeographic patterns of FBC relative to BBC across the United States. Fungal and bacterial turnover rates showed similar trends along latitude. However, latitudinal trends of their component fluxes (carbon assimilation, respiration, and necromass production) were distinct between bacteria and fungi, with those latitudinal trends following inverse unimodal patterns for fungi and showing exponential declining responses for bacteria. Carbon assimilation was dominated by vegetation productivity, and respiration was dominated by mean annual temperature for bacteria and fungi. The dominant factor for their necromass production differs, with edaphic factors controlling fungal and mean annual temperature controlling bacterial processes. The understanding of fungal and bacterial macroecology is an important step toward linking microbial metabolism and soil biogeochemical processes. Distinct fungal and bacterial macroecology contributes to the microbial ecology, particularly on microbial community structure and its association with ecosystem carbon cycling across space.more » « less
- 
            Abstract Soil microbes ultimately drive the mineralization of soil organic carbon and thus ecosystem functions. We compiled a dataset of the seasonality of microbial biomass carbon (MBC) and developed a semi-mechanistic model to map monthly MBC across the globe. MBC exhibits an equatorially symmetric seasonality between the Northern and Southern Hemispheres. In the Northern Hemisphere, MBC peaks in autumn and is minimal in spring at low latitudes (<25°N), peaks in the spring and is minimal in autumn at mid-latitudes (25°N to 50°N), while peaks in autumn and is minimal in spring at high latitudes (>50°N). This latitudinal shift of MBC seasonality is attributed to an interaction of soil temperature, soil moisture, and substrate availability. The MBC seasonality is inconsistent with patterns of heterotrophic respiration, indicating that MBC as a proxy for microbial activity is inappropriate at this resolution. This study highlights the need to explicitly represent microbial physiology in microbial models. The interactive controls of environments and substrate on microbial seasonality provide insights for better representing microbial mechanisms in simulating ecosystem functions at the seasonal scale.more » « less
- 
            Qian, Anita; Xu, Xiaofeng (Ed.)Birds play a crucial role in maintaining the balance and health of ecosystems worldwide, with their significance extending from ecological functions to cultural symbolism. Ecologically, birds contribute to pest control by preying on insects, regulating populations, and mitigating agricultural damage. They also aid in seed dispersal and pollination, facilitating vegetation growth and plant reproduction. Furthermore, birds serve as environmental indicators, reflecting broader ecological shifts. Recently, the National Ecological Observation Network (NEON) has undertaken the task of monitoring bird populations across various U.S. ecosystems. The project aims to decipher bird abundance patterns during peak growing seasons, synthesizing data on variables such as bird counts, beetle populations, latitude, longitude, tree dimensions, and vegetation productivity during 2017-2022 sourced from NEON databases. The findings reveal that bird counts decrease from low to high latitudes, with both beetles and vegetation productivity positively influencing bird abundance, while tree breast height diameter shows weak correlation. Strong inter-annual variations in bird counts were observed nationwide. Both correlation analysis and structural equation modeling underscore vegetation's pivotal role in bird abundance. In essence, the developed bird count data system offers valuable insights into bird and ecosystem health, aiding communities in understanding and preserving these vital ecosystems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available