Title: Learning to Reach, Swim, Walk and Fly in One Trial: Data-Driven Control with Scarce Data and Side Information
We develop a learning-based control algorithm for unknown dynamical systems under very severe data limitations. Specifically, the algorithm has access to streaming and noisy data only from a sin- gle and ongoing trial. It accomplishes such performance by effectively leveraging various forms of side information on the dynamics to reduce the sample complexity. Such side information typically comes from elementary laws of physics and qualitative properties of the system. More precisely, the algorithm approximately solves an optimal control problem encoding the system’s desired be- havior. To this end, it constructs and iteratively refines a data-driven differential inclusion that contains the unknown vector field of the dynamics. The differential inclusion, used in an interval Taylor-based method, enables to over-approximate the set of states the system may reach. Theo- retically, we establish a bound on the suboptimality of the approximate solution with respect to the optimal control with known dynamics. We show that the longer the trial or the more side infor- mation is available, the tighter the bound. Empirically, experiments in a high-fidelity F-16 aircraft simulator and MuJoCo’s environments illustrate that, despite the scarcity of data, the algorithm can provide performance comparable to reinforcement learning algorithms trained over millions of environment interactions. Besides, we show that the algorithm outperforms existing techniques combining system identification and model predictive control. more »« less
Kakade, Sham; Krishnamurthy, Akshay; Lowrey, Kendall; Ohnishi, Motoya; Sun, Wen
(, Advances in neural information processing systems)
null
(Ed.)
This work studies the problem of sequential control in an unknown, nonlinear dynamical system, where we model the underlying system dynamics as an unknown function in a known Reproducing Kernel Hilbert Space. This framework yields a general setting that permits discrete and continuous control inputs as well as non-smooth, non-differentiable dynamics. Our main result, the Lower Confidence-based Continuous Control (LC3) algorithm, enjoys a near-optimal "root T" regret bound against the optimal controller in episodic settings, where T is the number of episodes. The bound has no explicit dependence on dimension of the system dynamics, which could be infinite, but instead only depends on information theoretic quantities. We empirically show its application to a number of nonlinear control tasks and demonstrate the benefit of exploration for learning model dynamics.
Chakraborty, Sayan; Cui, Leilei; Ozbay, Kaan; Jiang, Zhong-Ping
(, Transportation Research Part B: Methodological)
The majority of the past research dealing with lane-changing controller design of autonomous vehicles (𝐴𝑉 s) is based on the assumption of full knowledge of the model dynamics of the 𝐴𝑉 and the surrounding vehicles. However, in the real world, this is not a very realistic assumption as accurate dynamic models are difficult to obtain. Also, the dynamic model parameters might change over time due to various factors. Thus, there is a need for a learning-based lane change controller design methodology that can learn the optimal control policy in real time using sensor data. In this paper, we have addressed this need by introducing an optimal learningbased control methodology that can solve the real-time lane-changing problem of 𝐴𝑉 s, where the input-state data of the 𝐴𝑉 is utilized to generate a near-optimal lane-changing controller by approximate/adaptive dynamic programming (ADP) technique. In the case of this type of complex lane-changing maneuver, the lateral dynamics depend on the longitudinal velocity of the vehicle. If the longitudinal velocity is assumed constant, a linear parameter invariant model can be used. However, assuming constant velocity while performing a lane-changing maneuver is not a realistic assumption. This assumption might increase the risk of accidents, especially in the case of lane abortion when the surrounding vehicles are not cooperative. Thus, in this paper, the dynamics of the 𝐴𝑉 are assumed to be a linear parameter-varying system. Thus we have two challenges for the lane-changing controller design: parameter-varying, and unknown dynamics. With the help of both gain scheduling and ADP techniques combined, a learning-based control algorithm that can generate a near-optimal lane-changing controller without having to know the accurate dynamic model of the 𝐴𝑉 is proposed. The inclusion of a gain scheduling approach with ADP makes the controller applicable to non-linear and/or parameter-varying 𝐴𝑉 dynamics. The stability of the learning-based gain scheduling controller has also been rigorously proved. Moreover, a data-driven lane-changing decision-making algorithm is introduced that can make the 𝐴𝑉 perform a lane abortion if safety conditions are violated during a lane change. Finally, the proposed learning-based gain scheduling controller design algorithm and the lane-changing decision-making methodology are numerically validated using MATLAB, SUMO simulations, and the NGSIM dataset.
In this paper, we address the problem of a two-player linear quadratic differential game with incomplete information, a scenario commonly encountered in multi-agent control, human-robot interaction (HRI), and approximation methods to solve general-sum differential games. While solutions to such linear differential games are typically obtained through coupled Riccati equations, the complexity increases when agents have incomplete information, particularly when neither is aware of the other’s cost function. To tackle this challenge, we propose a model-based Peer-Aware Cost Estimation (PACE) framework for learning the cost parameters of the other agent. In PACE, each agent treats its peer as a learning agent rather than a stationary optimal agent, models their learning dynamics, and leverages this dynamic to infer the cost function parameters of the other agent. This approach enables agents to infer each other’s objective function in real time based solely on their previous state observations and dynamically adapt their control policies. Furthermore, we provide a theoretical guarantee for the convergence of parameter estimation and the stability of system states in PACE. Additionally, using numerical studies, we demonstrate how modeling the learning dynamics of the other agent benefits PACE, compared to approaches that approximate the other agent as having complete information, particularly in terms of stability and convergence speed.
Gribelyuk, Elena; Sawettamalya, Pachara; Wu, Hongxun; Yu, Huacheng
(, Proceedings of the ACM on Management of Data)
Estimating the ε-approximate quantiles or ranks of a stream is a fundamental task in data monitoring. Given a stream x_1,..., x_n from a universe \mathcalU with total order, an additive-error quantile sketch \mathcalM allows us to approximate the rank of any query y\in \mathcalU up to additive ε n error. In 2001, Greenwald and Khanna gave a deterministic algorithm (GK sketch) that solves the ε-approximate quantiles estimation problem using O(ε^-1 łog(ε n)) space \citegreenwald2001space ; recently, this algorithm was shown to be optimal by Cormode and Vesleý in 2020 \citecormode2020tight. However, due to the intricacy of the GK sketch and its analysis, over-simplified versions of the algorithm are implemented in practical applications, often without any known theoretical guarantees. In fact, it has remained an open question whether the GK sketch can be simplified while maintaining the optimal space bound. In this paper, we resolve this open question by giving a simplified deterministic algorithm that stores at most (2 + o(1))ε^-1 łog (ε n) elements and solves the additive-error quantile estimation problem; as a side benefit, our algorithm achieves a smaller constant factor than the \frac11 2 ε^-1 łog(ε n) space bound in the original GK sketch~\citegreenwald2001space. Our algorithm features an easier analysis and still achieves the same optimal asymptotic space complexity as the original GK sketch. Lastly, our simplification enables an efficient data structure implementation, with a worst-case runtime of O(łog(1/ε) + łog łog (ε n)) per-element for the ordinary ε-approximate quantile estimation problem. Also, for the related weighted'' quantile estimation problem, we give efficient data structures for our simplified algorithm which guarantee a worst-case per-element runtime of O(łog(1/ε) + łog łog (ε W_n/w_\textrmmin )), achieving an improvement over the previous upper bound of \citeassadi2023generalizing.
Chen, Junjie; Li, Minming; Xu, Haifeng
(, Proceedings of the 39th International Conference on Machine Learning (ICML 2022))
We consider a new problem of selling data to a machine learner who looks to purchase data to train his machine learning model. A key challenge in this setup is that neither the seller nor the machine learner knows the true quality of data. When designing a revenue-maximizing mechanism, a data seller faces the tradeoff between the cost and precision of data quality estimation. To address this challenge, we study a natural class of mechanisms that price data via costly signaling. Motivated by the assumption of i.i.d. data points as in classic machine learning models, we first consider selling homogeneous data and derive an optimal selling mechanism. We then turn to the sale of heterogeneous data, motivated by the sale of multiple data sets, and show that 1) on the negative side, it is NP-hard to approximate the optimal mechanism within a constant ratio e/(e+1) + o(1); while 2) on the positive side, there is a 1/k-approximate algorithm, where k is the number of the machine learner’s private types.
Djeumou, Franck., and Topcu, Ufuk. Learning to Reach, Swim, Walk and Fly in One Trial: Data-Driven Control with Scarce Data and Side Information. Retrieved from https://par.nsf.gov/biblio/10383187. 4th Annual Conference on Learning for Dynamics and Control .
Djeumou, Franck., & Topcu, Ufuk. Learning to Reach, Swim, Walk and Fly in One Trial: Data-Driven Control with Scarce Data and Side Information. 4th Annual Conference on Learning for Dynamics and Control, (). Retrieved from https://par.nsf.gov/biblio/10383187.
Djeumou, Franck., and Topcu, Ufuk.
"Learning to Reach, Swim, Walk and Fly in One Trial: Data-Driven Control with Scarce Data and Side Information". 4th Annual Conference on Learning for Dynamics and Control (). Country unknown/Code not available. https://par.nsf.gov/biblio/10383187.
@article{osti_10383187,
place = {Country unknown/Code not available},
title = {Learning to Reach, Swim, Walk and Fly in One Trial: Data-Driven Control with Scarce Data and Side Information},
url = {https://par.nsf.gov/biblio/10383187},
abstractNote = {We develop a learning-based control algorithm for unknown dynamical systems under very severe data limitations. Specifically, the algorithm has access to streaming and noisy data only from a sin- gle and ongoing trial. It accomplishes such performance by effectively leveraging various forms of side information on the dynamics to reduce the sample complexity. Such side information typically comes from elementary laws of physics and qualitative properties of the system. More precisely, the algorithm approximately solves an optimal control problem encoding the system’s desired be- havior. To this end, it constructs and iteratively refines a data-driven differential inclusion that contains the unknown vector field of the dynamics. The differential inclusion, used in an interval Taylor-based method, enables to over-approximate the set of states the system may reach. Theo- retically, we establish a bound on the suboptimality of the approximate solution with respect to the optimal control with known dynamics. We show that the longer the trial or the more side infor- mation is available, the tighter the bound. Empirically, experiments in a high-fidelity F-16 aircraft simulator and MuJoCo’s environments illustrate that, despite the scarcity of data, the algorithm can provide performance comparable to reinforcement learning algorithms trained over millions of environment interactions. Besides, we show that the algorithm outperforms existing techniques combining system identification and model predictive control.},
journal = {4th Annual Conference on Learning for Dynamics and Control},
author = {Djeumou, Franck. and Topcu, Ufuk.},
editor = {Firoozi, R. and Mehr, N. and Yel, E. and Antonova, R. and Bohg, J. and Schwager, M. and Kochenderfer, M.}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.