skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Retinal chromophore charge delocalization and confinement explain the extreme photophysics of Neorhodopsin
Abstract The understanding of how the rhodopsin sequence can be modified to exactly modulate the spectroscopic properties of its retinal chromophore, is a prerequisite for the rational design of more effective optogenetic tools. One key problem is that of establishing the rules to be satisfied for achieving highly fluorescent rhodopsins with a near infrared absorption. In the present paper we use multi-configurational quantum chemistry to construct a computer model of a recently discovered natural rhodopsin, Neorhodopsin, displaying exactly such properties. We show that the model, that successfully replicates the relevant experimental observables, unveils a geometrical and electronic structure of the chromophore featuring a highly diffuse charge distribution along its conjugated chain. The same model reveals that a charge confinement process occurring along the chromophore excited state isomerization coordinate, is the primary cause of the observed fluorescence enhancement.  more » « less
Award ID(s):
1710191
PAR ID:
10383317
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Light-absorbing chromophores in photoreceptors contain a π-electron system and are intrinsically planar molecules. However, within a protein environment these cofactors often become nonplanar and chiral in a manner that is widely believed to be functionally important. When the same chromophore is out-of-plane distorted in opposite directions in different members of a protein family, such conformers become a set of enantiomers. In techniques using chiral optical spectroscopy such as Raman optical activity (ROA), such proteins are expected to show opposite signs in their spectra. Here we use two microbial rhodopsins, Gloeobacter rhodopsin and sodium ion pump rhodopsin (NaR), to provide the first experimental and theoretical evidence that the twist direction of the retinal chromophore indeed determines the sign of the ROA spectrum. We disrupt the hydrogen bond responsible for the distortion of the retinal in NaR and show that the sign of the ROA signals of this nonfunctional mutant is flipped. The reported ROA spectra are monosignate, a property that has been seen for a variety of photoreceptors, which we attribute to an energetically favorable gradual curvature of the chromophore. 
    more » « less
  2. For sustained vision, photoactivated rhodopsin (Rho*) must undergo hydrolysis and release of all- trans -retinal, producing substrate for the visual cycle and apo-opsin available for regeneration with 11- cis -retinal. The kinetics of this hydrolysis has yet to be described for rhodopsin in its native membrane environment. We developed a method consisting of simultaneous denaturation and chromophore trapping by isopropanol/borohydride, followed by exhaustive protein digestion, complete extraction, and liquid chromatography–mass spectrometry. Using our method, we tracked Rho* hydrolysis, the subsequent formation of N -retinylidene-phosphatidylethanolamine ( N -ret-PE) adducts with the released all- trans -retinal, and the reduction of all- trans -retinal to all- trans -retinol. We found that hydrolysis occurred faster in native membranes than in detergent micelles typically used to study membrane proteins. The activation energy of the hydrolysis in native membranes was determined to be 17.7 ± 2.4 kcal/mol. Our data support the interpretation that metarhodopsin II, the signaling state of rhodopsin, is the primary species undergoing hydrolysis and release of its all- trans -retinal. In the absence of NADPH, free all- trans -retinal reacts with phosphatidylethanolamine (PE), forming a substantial amount of N -ret-PE (∼40% of total all- trans -retinal at physiological pH), at a rate that is an order of magnitude faster than Rho* hydrolysis. However, N -ret-PE formation was highly attenuated by NADPH-dependent reduction of all- trans -retinal to all- trans -retinol. Neither N -ret-PE formation nor all- trans -retinal reduction affected the rate of hydrolysis of Rho*. Our study provides a comprehensive picture of the hydrolysis of Rho* and the release of all- trans -retinal and its reentry into the visual cycle, a process in which alteration can lead to severe retinopathies. 
    more » « less
  3. null (Ed.)
    The visualization of chloride in living cells with fluorescent sensors is linked to our ability to design hosts that can overcome the energetic penalty of desolvation to bind chloride in water. Fluorescent proteins can be used as biological supramolecular hosts to address this fundamental challenge. Here, we showcase the power of protein engineering to convert the fluorescent proton-pumping rhodopsin GR from Gloeobacter violaceus into GR1, a red-shifted, turn-on fluorescent sensor for chloride in detergent micelles and in live Escherichia coli . This non-natural function was unlocked by mutating D121, which serves as the counterion to the protonated retinylidene Schiff base chromophore. Substitution from aspartate to valine at this position (D121V) creates a binding site for chloride. The binding of chloride tunes the p K a of the chromophore towards the protonated, fluorescent state to generate a pH-dependent response. Moreover, ion pumping assays combined with bulk fluorescence and single-cell fluorescence microscopy experiments with E. coli , expressing a GR1 fusion with a cyan fluorescent protein, show that GR1 does not pump ions nor sense membrane potential but instead provides a reversible, ratiometric readout of changes in extracellular chloride at the membrane. This discovery sets the stage to use natural and laboratory-guided evolution to build a family of rhodopsin-based fluorescent chloride sensors with improved properties for cellular applications and learn how proteins can evolve and adapt to bind anions in water. 
    more » « less
  4. Abstract The lack of a theory capable of connecting the amino acid sequence of a light-absorbing protein with its fluorescence brightness is hampering the development of tools for understanding neuronal communications. Here we demonstrate that a theory can be established by constructing quantum chemical models of a set of Archaerhodopsin reporters in their electronically excited state. We found that the experimentally observed increase in fluorescence quantum yield is proportional to the computed decrease in energy difference between the fluorescent state and a nearby photoisomerization channel leading to an exotic diradical of the protein chromophore. This finding will ultimately support the development of technologies for searching novel fluorescent rhodopsin variants and unveil electrostatic changes that make light emission brighter and brighter. 
    more » « less
  5. The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore–environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations. We systematically analyzed and discussed four factors underlying the vibrational properties of FP chromophores: sidechain structure, conjugation structure, chromophore conformation, and the protein environment. A prominent bond-stretching mode characteristic of the quinoidal resonance structure is found to be conserved in most FPs and model chromophores investigated, which can be used as a vibrational marker to interpret chromophore–environment interactions and structural effects on the electronic properties of the chromophore. The fundamental insights gained for these light-sensing units (e.g., protein active sites) substantiate the unique and powerful capability of wavelength-tunable FSRS in delineating FP chromophore properties with high sensitivity and resolution in solution and protein matrices. The comprehensive characterization for various FPs across a colorful palette could also serve as a solid foundation for future spectroscopic studies and the rational engineering of FPs with diverse and improved functions. 
    more » « less