Arginine (Arg) complexes with Zn 2+ and Cd 2+ were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy using light from a free electron laser. Electrospray ionization generated complexes of deprotonated Arg with Zn 2+ , [Zn(Arg–H)] + , and Arg with CdCl + , CdCl + (Arg). Possible low-energy conformers of these species were found using quantum chemical calculations, and their calculated IR spectra were compared to experimentally measured IRMPD spectra. Calculations were performed at the B3LYP/6-311+G(d,p) level for Zn 2+ complexes and B3LYP/def2-TZVP with an SDD effective core potential on cadmium for CdCl + complexes. [Zn(Arg–H)] + was found to adopt a charge-solvated, tridentate [N,CO − ,N ω ′] structure where Zn 2+ binds to the backbone amine, carbonyl oxygen, and side-chain terminal guanidine nitrogen (N ω ′). The CdCl + (Arg) species was suggested to be a mixture of a dominant (∼85%) charge-solvated, tridentate [N,CO,N ω ′] structure where the CdCl + binds to the backbone amine, carbonyl, and side-chain imine (N ω ′) and a minor (∼15%) bidentate [N,CO − ](N ω ′H 2 + ) zwitterionic structure where the metal center binds to the backbone amine and carbonyl oxygen with intramolecular proton migration from the hydroxyl to the N ω ′ guanidine nitrogen (as designated in parenthesis).
more »
« less
Structural determination of arginine-linked cisplatin complexes via IRMPD action spectroscopy: arginine binds to platinum via NO − binding mode
Cisplatin, (NH 3 ) 2 PtCl 2 , has been known as a successful metal-based anticancer drug for more than half a century. Its analogue, Argplatin, arginine-linked cisplatin, (Arg)PtCl 2 , is being investigated because it exhibits reactivity towards DNA and RNA that differs from that of cisplatin. In order to understand the basis for its altered reactivity, the deprotonated and sodium cationized forms of Argplatin, [(Arg-H)PtCl 2 ] − and [(Arg)PtCl 2 + Na] + , are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy in the IR fingerprint and hydrogen-stretching regions. Complementary electronic structure calculations are performed using density functional theory approaches to characterize the stable structures of these complexes and to predict their infrared spectra. Comparison of the theoretical IR spectra predicted for various stable conformations of these Argplatin complexes to their measured IRMPD spectra enables determination of the binding mode(s) of Arg to the Pt metal center to be identified. Arginine is found to bind to Pt in a bidentate fashion to the backbone amino nitrogen and carboxylate oxygen atoms in both the [(Arg-H)PtCl 2 ] − and [(Arg)PtCl 2 + Na] + complexes, the NO − binding mode. The neutral side chain of Arg also interacts with the Pt center to achieve additional stabilization in the [(Arg-H)PtCl 2 ] − complex. In contrast, Na + binds to both chlorido ligands in the [(Arg)PtCl 2 + Na] + complex and the protonated side chain of Arg is stabilized via hydrogen-bonding interactions with the carboxylate moiety. These findings are consistent with condensed-phase results, indicating that the NO − binding mode of arginine to Pt is preserved in the electrospray ionization process even under variable pH and ionic strength.
more »
« less
- PAR ID:
- 10383322
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 23
- Issue:
- 38
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 21959 to 21971
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Complexes of 18-crown-6 ether (18C6) with four protonated amino acids (AAs) are examined using infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by the infrared free electron laser at the Centre Laser Infrarouge d’Orsay (CLIO). The AAs examined in this work include glycine (Gly) and the three basic AAs: histidine (His), lysine (Lys), and arginine (Arg). To identify the (AA)H + (18C6) conformations present in the experimental studies, the measured IRMPD spectra are compared to spectra calculated at the B3LYP/6-311+G(d,p) level of theory. Relative energies of various conformers and isomers are provided by single point energy calculations carried out at the B3LYP, B3P86, M06, and MP2(full) levels using the 6-311+G(2p,2d) basis set. The comparisons between the IRMPD and theoretical IR spectra indicate that 18C6 binds to Gly and His via the protonated backbone amino group, whereas protonated Lys prefers binding via the protonated side-chain amino group. Results for Arg are less definitive with strong evidence for binding to the protonated guanidino side chain (the calculated ground conformer at most levels of theory), but contributions from backbone binding to a zwitterionic structure are likely.more » « less
-
Crystals of the title salt, (C8H20N)[Sn(C6H5)3(C2H2O2S)], comprise diisobutylammonium cations and mercaptoacetatotriphenylstannate(IV) anions. The bidentate binding mode of the mercaptoacetate ligand gives rise to a five-coordinated, ionic triphenyltin complex with a distortedcis-trigonal–bipyramidal geometry around the tin atom. In the crystal, charge-assisted ammonium-N—H...O(carboxylate) hydrogen-bonding connects two cations and two anions into a four-ion aggregate. Two positions were resolved for one of the phenyl rings with the major component having a site occupancy factor of 0.60 (3).more » « less
-
Abstract The dialkyl malonate derived 1,3‐diphosphines R2C(CH2PPh2)2(R=a, Me;b, Et;c,n‐Bu;d,n‐Dec;e, Bn;f,p‐tolCH2) are combined with (p‐tol3P)2PtCl2ortrans‐(p‐tol3P)2Pt((C≡C)2H)2to give the chelatescis‐(R2C(CH2PPh2)2)PtCl2(2 a–f, 94–69 %) orcis‐(R2C(CH2PPh2)2)Pt((C≡C)2H)2(3 a–f, 97–54 %). Complexes3 a–dare also available from2 a–dand excess 1,3‐butadiyne in the presence of CuI (cat.) and excess HNEt2(87–65 %). Under similar conditions,2and3react to give the title compounds [(R2C(CH2PPh2)2)[Pt(C≡C)2]4(4 a–f; 89–14 % (64 % avg)), from which ammonium salts such as the co‐product [H2NEt2]+Cl−are challenging to remove. Crystal structures of4 a,bshow skew rhombus as opposed to square Pt4geometries. The NMR and IR properties of4 a–fare similar to those of mono‐ or diplatinum model compounds. However, cyclic voltammetry gives only irreversible oxidations. As compared to mono‐platinum or Pt(C≡C)2Pt species, the UV‐visible spectra show much more intense and red‐shifted bands. Time dependent DFT calculations define the transitions and principal orbitals involved. Electrostatic potential surface maps reveal strongly negative Pt4C16cores that likely facilitate ammonium cation binding. Analogous electronic properties of Pt3C12and Pt5C20homologs and selected equilibria are explored computationally.more » « less
-
null (Ed.)Bis[η 5 -( tert -butoxycarbonyl)cyclopentadienyl]dichloridotitanium(IV), [Ti(C 10 H 13 O 2 ) 2 Cl 2 ], was synthesized from LiCp COO t -Bu using TiCl 4 , and was characterized by single-crystal X-ray diffraction and 1 H NMR spectroscopy. The distorted tetrahedral geometry about the central titanium atom is relatively unchanged compared to Cp 2 TiCl 2 . The complex exhibits elongation of the titanium–cyclopentadienyl centroid distances [2.074 (3) and 2.070 (3) Å] and a contraction of the titanium–chlorine bond lengths [2.3222 (10) Å and 2.3423 (10) Å] relative to Cp 2 TiCl 2 . The dihedral angle formed by the planes of the Cp rings [52.56 (13)°] is smaller than seen in Cp 2 TiCl 2 . Both ester groups extend from the same side of the Cp rings, and occur on the same side of the complex as the chlorido ligands. The complex may serve as a convenient synthon for titanocene complexes with carboxylate anchoring groups for binding to metal oxide substrates.more » « less
An official website of the United States government

