skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Opposing pressures of climate and land‐use change on a native bee
Abstract Anthropogenic activities are rapidly changing the environment, and species that do not respond face a higher risk of extinction. Species may respond to environmental changes by modifying their behaviors, shifting their distributions, or changing their morphology. Recent morphological responses are often measured by changes in body size. Changes in body size are often attributed to climate change, but may instead be due to differences in available resources associated with changes in local land‐use. The effects of temperature and land‐use can be uncoupled in populations of the small carpenter beeCeratina calcarata, which have experienced changes in agricultural and urban cover independent of climate change. We studied how the morphology of this bee has changed over the past 118 years (1902–2019) in relation to climate change and the past 45 years (1974–2019) in relation to agricultural and urban cover. Over this time, summer temperatures increased. We found that male and female size decreased with increasing temperature. Male size also decreased with agricultural expansion. Female size, however, increased with agricultural expansion. These results suggest that rising temperatures correlate with a decrease in female body size, while, opposite to predicted, agricultural land‐use may select for increased female body size. These opposing pressures act concurrently and may result in bee extirpation from agricultural habitats if selection for large sizes is unsustainable as temperatures continue to increase. Furthermore, this study emphasizes the need to consider multiple environmental stressors when examining the effects of climate change due to their interactions.  more » « less
Award ID(s):
1906494
PAR ID:
10383375
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
27
Issue:
5
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1017-1026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Life-history traits, which are physical traits or behaviours that affect growth, survivorship and reproduction, could play an important role in how well organisms respond to environmental change. By looking for trait-based responses within groups, we can gain a mechanistic understanding of why environmental change might favour or penalize certain species over others. We monitored the abundance of at least 154 bee species for 8 consecutive years in a subalpine region of the Rocky Mountains to ask whether bees respond differently to changes in abiotic conditions based on their life-history traits. We found that comb-building cavity nesters and larger bodied bees declined in relative abundance with increasing temperatures, while smaller, soil-nesting bees increased. Further, bees with narrower diet breadths increased in relative abundance with decreased rainfall. Finally, reduced snowpack was associated with reduced relative abundance of bees that overwintered as prepupae whereas bees that overwintered as adults increased in relative abundance, suggesting that overwintering conditions might affect body size, lipid content and overwintering survival. Taken together, our results show how climate change may reshape bee pollinator communities, with bees with certain traits increasing in abundance and others declining, potentially leading to novel plant–pollinator interactions and changes in plant reproduction. 
    more » « less
  2. Abstract Historical data suggest that many bee species have declined in body size. Larger‐bodied bees with narrow phenological and dietary breadth are most prone to declines in body size over time. This may be especially true in solitary, desert‐adapted species that are vulnerable to climate change such asCentris pallida(Hymenoptera: Apidae). In addition, body size changes in species with size‐linked behaviours could threaten the prevalence of certain behavioural phenotypes long‐term.C. pallidasolitary bees are found in the Sonoran Desert. Males use alternative reproductive tactics (ARTs) and are dimorphic in both morphology and behaviour.C. pallidamale body size has been studied since the 1970s in the same population. The authors collected body size data in 2022 and combined it with published records from 1974–2022. The authors find a persistent decline in the mean head width of patrolling males, and shifts towards smaller body sizes in the populations of males found foraging and hovering. Both morphs declined in average body size, and the proportion of large‐morph males in the population decreased by 8%. Mating males did not decline in mean body size over the last five decades. The authors discuss hypotheses related to the decline inC. pallidamale head width. Finally, the authors advocate forC. pallidaas an excellent study system for understanding the stability of ARTs with size‐linked behavioural phenotypes. 
    more » « less
  3. DeGrandi-Hoffman, Gloria (Ed.)
    Abstract Both ecosystem function and agricultural productivity depend on services provided by bees; these services are at risk from bee declines which have been linked to land use change, pesticide exposure, and pathogens. Although these stressors often co-occur in agroecosystems, a majority of pollinator health studies have focused on these factors in isolation, therefore limiting our ability to make informed policy and management decisions. Here, we investigate the combined impact of altered landscape composition and fungicide exposure on the prevalence of chalkbrood disease, caused by fungi in the genus Ascosphaera Olive and Spiltoir 1955 (Ascosphaeraceae: Onygenales), in the introduced solitary bee, Osmia cornifrons (Radoszkowski 1887) (Megachilidae: Hymenoptera). We used both field studies and laboratory assays to evaluate the potential for interactions between altered landscape composition, fungicide exposure, and Ascosphaera on O. cornifrons mortality. Chalkbrood incidence in larval O. cornifrons decreased with high open natural habitat cover, whereas Ascosphaera prevalence in adults decreased with high urban habitat cover. Conversely, high fungicide concentration and high forest cover increased chalkbrood incidence in larval O. cornifrons and decreased Ascosphaera incidence in adults. Our laboratory assay revealed an additive effect of fungicides and fungal pathogen exposure on the mortality of a common solitary bee. Additionally, we utilized phylogenetic methods and identified four species of Ascosphaera with O. cornifrons, both confirming previous reports and shedding light on new associates. Our findings highlight the impact of fungicides on bee health and underscore the importance of studying interactions among factors associated with bee decline. 
    more » « less
  4. Abstract Human‐induced climate change, land use changes, and urbanization are predicted to dramatically impact landscape hydrology, which can have devastating impacts on aquatic organisms. For amphibians that rely on aquatic environments to breed and develop, it is essential to understand how the larval environment impacts development, condition, and performance later in life. Two important predicted impacts of climate change, urbanization, and land use changes are reduced hydroperiod and variable larval density. Here, we explored how larval density and hydroperiod affect development, morphology, physiology, and immune defenses at metamorphosis and 35 days post‐metamorphosis in the frogRana pipiens. We found that high‐density larval conditions had a large negative impact on development and morphology, which resulted in longer larval periods, reduced likelihood of metamorphosis, smaller size at metamorphosis, shorter femur to body length ratio, and reduced microbiome species evenness compared with animals that developed in low‐density conditions. However, animals from the high‐density treatment experienced compensatory growth post‐metamorphosis, demonstrating accelerated growth in body size and relative femur length compared with animals from the low‐density treatments, despite not “catching‐up” in size. We also observed an increase in relative gut length and relative liver size in animals that had developed in the high‐density treatment than those in the low‐density treatment, as well as higher bacterial killing ability, and greater jump distances relative to their leg length across different temperatures. Finally, metabolic rate was higher overall but especially at higher test temperatures for animals that developed under high‐density conditions, indicating that these animals may expend more energy in response to acute temperature changes. While the effects of climate change have direct negative effects on larval development and metamorphosis, animals can increase growth rate post‐metamorphosis; however, that compensatory growth might come at a cost and reduce their ability to cope with further environmental change such as increased temperatures. 
    more » « less
  5. An animal’s morphology influences its ability to perform essential tasks, such as locomoting to obtain prey or escape predators. While morphology–performance relationships are well-studied in lizards, most conclusions have been based only on male study subjects, leaving unanswered questions about females. Sex-specific differences are important to understand because females carry the bulk of the physiological demands of reproduction. Consequently, their health and survival can determine the fate of the population as a whole. To address this knowledge gap, we sampled introduced populations of common wall lizards (Podarcis muralis) in Ohio, USA. We measured a complete suite of limb and body dimensions of both males and females, and we measured sprint speeds while following straight and curved paths on different substrates. Using a multivariate statistical approach, we identified that body dimensions relative to snout-to-vent length in males were much larger compared with females and that body dimensions of P. muralis have changed over time in both sexes. We found that sprint speed along curved paths increased with relative limb size in both males and females. When following straight paths, male speed similarly increased as body dimensions increased; conversely, female speed decreased as body dimensions increased. Female sprint speed was also found to have less variation than that of males and was less affected by changes in body size and hindfoot length compared with males. This study thus provides insights into how selective pressures might shape males and females differently and the functional implications of sexual dimorphism. 
    more » « less