skip to main content


Title: Testing Predictions for Migration of Meandering Rivers: Fit for a Curvature‐Based Model Depends on Streamwise Location and Timescale
Abstract

Many meandering rivers migrate, at rates that vary both along‐stream and inversely with the observation interval. Many numerical models have been developed to predict this migration; their success is usually evaluated statistically or by qualitative comparison to observations in map view. We propose a framework to test migration models that unites these statistical, spatial, and temporal perspectives. We measure model fit with a statistic that compares the magnitude and direction of migration between predictions and observations. Model fit is contextualized in space, using a dimensionless coordinate system based in the location along a half‐meander bend; and in time, using a dimensionless observation interval that accounts for channel scale and migration rate. We applied this framework to test predictions for a curvature‐driven model of channel migration, using data from seven rapidly migrating rivers in the Amazon Basin and 103 more slowly migrating rivers across the continental US, as reconstructed from a legacy data set. We find that across both datasets, channel migration rates peak slightly downstream of the bend apex. Migration rate underestimation/overestimation tends to occur when the observed rate is greater/less than its median along the channel. Predicted migration direction opposes observations for slowly migrating locations and upstream of the bend apex. Model forecasts break down if the channel migrates by more than its width. The analysis framework is portable to testing other models of channel migration, and can help improve predictions for the stability of infrastructure along rivers and for landscape change over geologic timescales.

 
more » « less
NSF-PAR ID:
10383385
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
127
Issue:
12
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Rivers are the primary conduits of water and sediment across Earth's surface. In recent decades, rivers have been increasingly impacted by climate change and human activities. The availability of global‐coverage satellite imagery provides a powerful avenue to study river mobility and quantify the impacts of these perturbations on global river behavior. However, we lack remote sensing methods for quantifying river mobility that can be generally applied across the diversity of river planforms (e.g., meandering, braided) and fluvial processes (e.g., channel migration, avulsion). Here, we upscale area‐based methods from laboratory flume experiments to build a generalized remote sensing framework for quantifying river mobility. The framework utilizes binary channel‐mask time series to determine time‐ and area‐integrated rates and scales of river floodplain reworking and channel‐thread reorganization. We apply the framework to numerical models to demonstrate that these rates and scales are sensitive to specific river processes (channel migration, channel‐bend cut‐off, and avulsion). We then apply the framework to natural migrating and avulsing rivers with meandering and braided planforms. Results show that our area‐based framework provides an objective and accurate means to quantify river mobility at reach‐ to floodplain‐scales, which is largely insensitive to spatial and temporal biases that can arise in traditional mobility metrics. Our work provides a framework for investigating global controls on river mobility, testing hypotheses about river response to environmental gradients, and quantifying the timescales of terrestrial organic carbon cycling.

     
    more » « less
  2. Abstract

    Across varied environments, meandering channels evolve through a common morphodynamic feedback: the sinuous channel shape causes spatial variations in boundary shear stress, which cause lateral migration rates to vary along a meander bend and change the shape of the channel. This feedback is embedded in all conceptual models of meandering channel migration, and in numerical models, it occurs over an explicit timescale (i.e., the model time step). However, the sensitivity of modeled channel trajectory to the time step is unknown. In numerical experiments using a curvature‐driven model of channel migration, we find that channel trajectories are consistent over time if the channel migrates ≤10% of the channel width over the feedback timescale. In contrast, channel trajectories diverge if the time step causes migration to exceed this threshold, due to the instability in the co‐evolution of channel curvature and migration rate. The divergence of channel trajectories accumulates with the total run time. Application to hindcasting of channel migration for 10 natural rivers from the continental US and the Amazon River basin shows that the sensitivity of modeled channel trajectories to the time step is greatest at low (near‐unity) channel sinuosity. A time step exceeding the criterion causes over‐prediction of the width of the channel belt developed over millennial timescales. These findings establish a geometric constraint for predicting channel migration in landscape evolution models for lowland alluvial rivers, upland channels coupled to hillslopes and submarine channels shaped by turbidity currents, over timescales from years to millennia.

     
    more » « less
  3. Valla, Pierre (Ed.)
    Abstract Over the past few decades, tectonic geomorphology has been widely implemented to constrain spatial and temporal patterns of fault slip, especially where existing geologic or geodetic data are poor. We apply this practice along the eastern margin of Bull Mountain, Southwest Montana, where 15 transient channels are eroding into the flat, upstream relict landscape in response to an ongoing period of increased base level fall along the Western North Boulder fault. We aim to improve constraints on the spatial and temporal slip rates across the Western North Boulder fault zone by applying channel morphometrics, cosmogenic erosion rates, bedrock characteristics, and calibrated reproductions of the modern river profiles using a 1-dimensional stream power incision model that undergoes a change in the rate of base level fall. We perform over 104 base level fall simulations to explore a wide range of fault slip dynamics and stream power parameters. Our best fit simulations suggest that the Western North Boulder fault started as individual fault segments along the middle to southern regions of Bull Mountain that nucleated around 6.2 to 2.5 Ma, respectively. This was followed by the nucleation of fault segments in the northern region around 1.5 to 0.4 Ma. We recreate the evolution of the Western North Boulder fault to show that through time, these individual segments propagate at the fault tips and link together to span over 40 km, with a maximum slip of 462 m in the central portion of the fault. Fault slip rates range from 0.02 to 0.45 mm/yr along strike and are consistent with estimates for other active faults in the region. We find that the timing of fault initiation coincides well with the migration of the Yellowstone hotspot across the nearby Idaho-Montana border and thus attribute the initiation of extension to the crustal bulge from the migrating hotspot. Overall, we provide the first quantitative constraints on fault initiation and evolution of the Western North Boulder fault, perhaps the farthest north basin in the Northern Basin and Range province that such constraints exist. We show that river profiles are powerful tools for documenting the spatial and temporal patterns of normal fault evolution, especially where other geologic/geodetic methods are limited, proving to be a vital tool for accurate tectonic hazard assessments. 
    more » « less
  4. Abstract

    Flow separation has been observed and studied in sinuous laboratory channels and natural meanders, but the effects of flow separation on along‐channel drag are not well understood. Motivated by observations of large drag coefficients from a shallow, sinuous estuary, we built idealized numerical models representative of that system. We found that flow separation in tidal channels with curvature can create form drag that increases the total drag to more than twice that from bottom friction alone. In the momentum budget, the pressure gradient is balanced by the combined effects of bottom friction and form drag, which is calculated directly. The effective increase in total drag coefficient depends on two geometric parameters: dimensionless water depth and bend sharpness, quantified as the bend radius of curvature to channel width ratio. We introduce a theoretical boundary layer separation model to explain this parameter dependence and to predict flow separation and the increased drag. The drag coefficient can increase by a factor of 2–7 in “sharp” and “deep” sinuous channels where flow separation is most likely. Flow separation also enhances energy dissipation due to increased velocities in bends, resulting in greater loss of tidal energy and weakened stratification. Flow separation and the associated drag increase are expected to be more common in meanders of tidal channels than rivers where point bars that inhibit flow separation are more commonly found. The increased drag due to flow separation reduces tidal amplitude and affects velocity phasing along the estuary and could result in morphological feedbacks.

     
    more » « less
  5. Temporal and spatial variations of tectonic rock uplift are generally thought to be the main controls on long-term erosion rates in various landscapes. However, rivers continuously lengthen and capture drainages in strike-slip fault systems due to ongoing motion across the fault, which can induce changes in landscape forms, drainage networks, and local erosion rates. Located along the restraining bend of the San Andreas Fault, the San Bernardino Mountains provide a suitable location for assessing the influence of topographic disequilibrium from perturbations by tectonic forcing and channel reorganization on measured erosion rates. In this study, we measured 17 new basin-averaged erosion rates using cosmogenic 10Be in river sands (hereafter, 10Be-derived erosion rates) and compiled 31 10Be-derived erosion rates from previous work. We quantify the degree of topographic disequilibrium using topographic analysis by examining hillslope and channel decoupling, the areal extent of pre-uplift surface, and drainage divide asymmetry across various landscapes. Similar to previous work, we find that erosion rates generally increase from north to south across the San Bernardino Mountains, reflecting a southward increase in tectonic activity. However, a comparison between 10Be-derived erosion rates and various topographic metrics in the southern San Bernardino Mountains suggests that the presence of transient landscape features such as relict topography and drainage-divide migration may explain local variations in 10Be-derived erosion rates. Our work shows that coupled analysis of erosion rates and topographic metrics provides tools for assessing the influence of tectonic uplift and channel reorganization on landscape evolution and 10Be-derived erosion rates in an evolving strike-slip restraining bend.

     
    more » « less