skip to main content

This content will become publicly available on January 1, 2023

Title: Rivers in reverse: Upstream-migrating dechannelization and flooding cause avulsions on fluvial fans
Abstract The process of river avulsion builds floodplains and fills alluvial basins. We report on a new style of river avulsion identified in the Landsat satellite record. We found 69 examples of retrogradational avulsions on rivers of densely forested fluvial fans in the Andean and New Guinean alluvial basins. Retrogradational avulsions are initiated by a channel blockage, e.g., a logjam, that fills the channel with sediment and forces water overbank (dechannelization), which creates a chevron-shaped flooding pattern. Dechannelization waves travel upstream at a median rate of 387 m/yr and last on average for 13 yr; many rivers show multiple dechannelizing events on the same reach. Dechannelization ends and the avulsion is complete when the river finds a new flow path. We simulate upstream-migrating dechannelization with a one-dimensional morphodynamic model for open channel flow. Observations are consistent with model results and show that channel blockages can cause dechannelization on steep (10−2 to 10−3), low-discharge (~101 m3 s−1) rivers. This illustrates a new style of floodplain sedimentation that is unaccounted for in ecologic and stratigraphic models.
Authors:
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1911321
Publication Date:
NSF-PAR ID:
10342906
Journal Name:
Geology
Volume:
50
Issue:
1
Page Range or eLocation-ID:
37 to 41
ISSN:
0091-7613
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The rarely witnessed process of river avulsion repositions channels across floodplains, which influences floodplain geomorphology and stratigraphic architecture. The way avulsions redirect water and sediment is typically generalized into one of two styles. Avulsions proceeding through rapid channel switching and producing little to no floodplain disturbance are annexational, while those that involve sequential phases of crevassing, flooding, and eventual development of a new channel are progradational. We test the validity of these avulsion style categories by mapping and characterizing 14 avulsion events in Andean, Himalayan, and New Guinean foreland basins. We use Landsat data to identify how avulsions proceed and interpret the possible products of these processes in terms of geomorphic features and stratigraphy. We show that during annexation the avulsion channel widens, changes its meander wavelength and amplitude, or increases channel thread count. During progradation, avulsion channels are constructed from evolving distributary networks. Often beginning as crevasse splays, these networks migrate down the floodplain gradient and frequently create and fill ponds during the process. We also see evidence for a recently defined third avulsion style. Retrogradation involves overbank flow, like progradation, but is marked by an upstream-migrating abandonment and infilling of the parent channel. Avulsion belts in thismore »study range from 5 to 60 km in length, and from 1 to 50 km in width. On average, these events demonstrate annexational style over 22.4% of their length. Eleven of 13 events either begin or end with annexation, and seven both begin and end with annexation. Only one event exhibited progradation over the entire avulsion-belt length. While there are many documented examples of purely annexational avulsions, we see little evidence for completely progradational or retrogradational avulsions, and instead suggest that a given avulsion is better envisioned as a series of spatiotemporal phases of annexation, progradation, and retrogradation. Such hybrid avulsions likely produce significantly greater stratigraphic variability than that predicted by the traditional end-member model. We suggest that a time-averaged, formation-scale consideration of avulsion products will yield more accurate characterizations of avulsion dynamics in ancient fluvial systems.« less
  2. Abstract. River avulsions are an important mechanism by which sediment is routed andemplaced in foreland basins. However, because avulsions occur infrequently,we lack observational data that might inform where, when, and why avulsionsoccur and these issues are instead often investigated by rule-basednumerical models. These models have historically simplified or neglected the effects of abandoned channels on avulsion dynamics, even though fluvialmegafans in foreland basins are characteristically covered in abandonedchannels. Here, we investigate the pervasiveness of abandoned channels onmodern fluvial megafan surfaces. Then, we present a physically basedcellular model that parameterizes interactions between a single avulsingriver and abandoned channels in a foreland basin setting. We investigate how abandoned channels affect avulsion setup, pathfinding, and landscapeevolution. We demonstrate and discuss how the processes of abandoned channel inheritance and transient knickpoint propagation post-avulsion serve to shortcut the time necessary to set up successive avulsions. Then, we address the idea that abandoned channels can both repel and attract future pathfinding flows under different conditions. By measuring the distance between the mountain front and each avulsion over long (106 to 107 years) timescales, we show that increasing abandoned channel repulsion serves to push avulsions farther from the mountain front, while increasing attraction pulls avulsions proximally. Abandoned channels domore »not persist forever, and we test possible channel healing scenarios (deposition-only, erosion-only, and far-field-directed) and show that only the final scenario achieves dynamic equilibrium without completely filling accommodation space. We also observe megafan growth occurring via ∼100 000-year cycles of lobe switching but only in our runs that employ deposition-only or erosion-only healing modes. Finally, we highlight opportunities for future field work and remote sensing efforts to inform our understanding of the role that floodplain topography, including abandoned channels, plays on avulsion dynamics.« less
  3. Sea-level rise, subsidence, and reduced fluvial sediment supply are causing river deltas to drown worldwide, affecting ecosystems and billions of people. Abrupt changes in river course, called avulsions, naturally nourish sinking land with sediment; however, they also create catastrophic flood hazards. Existing observations and models conflict on whether the occurrence of avulsions will change due to relative sea-level rise, hampering the ability to forecast delta response to global climate change. Here, we combined theory, numerical modeling, and field observations to develop a mechanistic framework to predict avulsion frequency on deltas with multiple self-formed lobes that scale with backwater hydrodynamics. Results show that avulsion frequency is controlled by the competition between relative sea-level rise and sediment supply that drives lobe progradation. We find that most large deltas are experiencing sufficiently low progradation rates such that relative sea-level rise enhances aggradation rates—accelerating avulsion frequency and associated hazards compared to preindustrial conditions. Some deltas may face even greater risk; if relative sea-level rise significantly outpaces sediment supply, then avulsion frequency is maximized, delta plains drown, and avulsion locations shift inland, posing new hazards to upstream communities. Results indicate that managed deltas can support more frequent engineered avulsions to recover sinking land; however, theremore »is a threshold beyond which coastal land will be lost, and mitigation efforts should shift upstream.

    « less
  4. Incising rivers may be confined by low-slope, erodible hillslopes or steep, resistant sidewalls. In the latter case, the system forms a canyon. We present a morphodynamic model that includes the essential elements of a canyon incising into a plateau, including 1) abrasion-driven channel incision, 2) migration of a canyon-head knickpoint, 3) sediment feed from an alluvial channel upstream of the knickpoint, and 4) production of sediment by sidewall collapse. We calculate incision in terms of collision of clasts with the bed. We calculate knickpoint migration using a moving-boundary formulation that allows a slope discontinuity where the channel head meets an alluvial plateau feeder channel. Rather than modeling sidewall collapse events, we model long-term behavior using a constant sidewall slope as the channel incises. Our morphodynamic model specifically applies to canyon, rather than river–hillslope evolution. We implement it for Rainbow Canyon, CA. Salient results are as follows: 1) Sediment supply from collapsing canyon sidewalls can be substantially larger than that supplied from the feeder channel on the plateau. 2) For any given quasi-equilibrium canyon bedrock slope, two conjugate slopes are possible for the alluvial channel upstream, with the lower of the two corresponding to a substantially lower knickpoint migration rate andmore »higher preservation potential. 3) Knickpoint migration occurs at a substantially faster time scale than regrading of the bedrock channel itself, underlying the significance of disequilibrium processes. Although implemented for constant climactic conditions, the model warrants extension to long-term climate variation.

    « less
  5. Abstract Non-perennial rivers and streams make up over half the global river network and are becoming more widespread. Transitions from perennial to non-perennial flow are a threshold-type change that can lead to alternative stable states in aquatic ecosystems, but it is unknown whether streamflow itself is stable in either wet (flowing) or dry (no-flow) conditions. Here, we investigated drivers and feedbacks associated with regime shifts between wet and dry conditions in an intermittent reach of the Arkansas River (USA) over the past 23 years. Multiple lines of evidence suggested that these regimes represent alternative stable states, including (a) significant jumps in discharge time series that were not accompanied by jumps in flow drivers such as precipitation and groundwater pumping; (b) a multi-modal state distribution with 92% of months experiencing no-flow conditions for <10% or >90% of days, despite unimodal distributions of precipitation and pumping; and (c) a hysteretic relationship between climate and flow state. Groundwater levels appear to be the primary control over the hydrological regime, as groundwater levels in the alluvial aquifer were higher than the stream stage during wet regimes and lower than the streambed during dry regimes. Groundwater level variation, in turn, was driven by processes occurringmore »at both the regional scale (surface water inflows from upstream, groundwater pumping) and the reach scale (stream–aquifer exchange, diffuse recharge through the soil column). Historical regime shifts were associated with diverse pressures including network disconnection caused by upstream water use, increased flow stability potentially associated with reservoir operations, and anomalous wet and dry climate conditions. In sum, stabilizing feedbacks among upstream inflows, stream–aquifer interactions, climate, vegetation, and pumping appear to create alternative wet and dry stable states at this site. These stabilizing feedbacks suggest that widespread observed shifts from perennial to non-perennial flow will be difficult to reverse.« less