Text input on mobile devices without physical keys can be challenging for people who are blind or low-vision. We interview 12 blind adults about their experiences with current mobile text input to provide insights into what sorts of interface improvements may be the most beneficial. We identify three primary themes that were experiences or opinions shared by participants: the poor accuracy of dictation, difficulty entering text in noisy environments, and difficulty correcting errors in entered text. We also discuss an experimental non-visual text input method with each participant to solicit opinions on the method and probe their willingness to learn a novel method. We find that the largest concern was the time required to learn a new technique. We find that the majority of our participants do not use word predictions while typing but instead find it faster to finish typing words manually. Finally, we distill five future directions for non-visual text input: improved dictation, less reliance on or improved audio feedback, improved error correction, reducing the barrier to entry for new methods, and more fluid non-visual word predictions.
more »
« less
The Impact of Number of Predictions on User Performance in a Dwell Keyboard
Word predictions in a text entry interface can help accelerate a user’s input. This may especially be true for users who have a slow input rate due to some form of motor-impairment. The choice of how many word predictions to offer in a text entry interface is an important design decision. In this work, we offered different number of word predictions in a keyboard where able-bodied users had to dwell on a key for one second to click it. We found participants’ text entry rate did not improve with increasing number of predictions.
more »
« less
- Award ID(s):
- 1750193
- PAR ID:
- 10383457
- Date Published:
- Journal Name:
- MobileHCI 2022 Workshop on Shaping Text Entry Research for 2030
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Typing every character in a text message may require more time or effort than strictly necessary. Skipping spaces or other characters may be able to speed input and also reduce a user's physical input effort. This can be particularly important for people with motor impairments. In a large crowdsourced study, we found workers frequently abbreviated text by omitting mid-word vowels. We designed a recognizer optimized for noisy input where users often omit spaces and mid-word vowels. We show using neural language models for selecting training text and rescoring sentences improved accuracy. On noisy touchscreen data collected from hundreds of users, we found accurate abbreviated input was possible even if a third of characters were omitted. Finally, in a study where users had to dwell for a second on each key, sentence abbreviated input was competitive with a conventional keyboard with word predictions. After practice, users wrote abbreviated sentences at 9.6 words-per-minute versus word input at 9.9 words-per-minute.more » « less
-
Text entry is a common and important part of many intelligent user interfaces. However, inferring a user’s intended text from their input can be challenging: motor actions can be imprecise, input sensors can be noisy, and situations or disabilities can hamper a user’s perception of interface feedback. Numerous prior studies have explored input on touchscreen phones, smartwatches, in midair, and on desktop keyboards. Based on these prior studies, we are releasing a large and diverse data set of noisy typing input consisting of thousands of sentences written by hundreds of users on QWERTY-layout keyboards. This paper describes the various subsets contained in this new research dataset as well as the data format.more » « less
-
Mobile devices use language models to suggest words and phrases for use in text entry. Traditional language models are based on contextual word frequency in a static corpus of text. However, certain types of phrases, when offered to writers as suggestions, may be systematically chosen more often than their frequency would predict. In this paper, we propose the task of generating suggestions that writers accept, a related but distinct task to making accurate predictions. Although this task is fundamentally interactive, we propose a counterfactual setting that permits offline training and evaluation. We find that even a simple language model can capture text characteristics that improve acceptability.more » « less
-
In this paper, we introduce a morphologically-aware electronic dictionary for St. Lawrence Island Yupik, an endangered language of the Bering Strait region. Implemented using HTML, Javascript, and CSS, the dictionary is set in an uncluttered interface and permits users to search in Yupik or in English for Yupik root words and Yupik derivational suffixes. For each matching result, our electronic dictionary presents the user with the corresponding entry from the Badten (2008) Yupik-English paper dictionary. Because Yupik is a polysynthetic language, handling of multimorphemic word forms is critical. If a user searches for an inflected Yupik word form, we perform a morphological analysis and return entries for the root word and for any derivational suffixes present in the word. This electronic dictionary should serve not only as a valuable resource for all students and speakers of Yupik, but also for field linguists working towards documentation and conservation of the language.more » « less
An official website of the United States government

