skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atomistic deformation mechanism of silicon under laser-driven shock compression
Abstract Silicon (Si) is one of the most abundant elements on Earth, and it is the most widely used semiconductor. Despite extensive study, some properties of Si, such as its behaviour under dynamic compression, remain elusive. A detailed understanding of Si deformation is crucial for various fields, ranging from planetary science to materials design. Simulations suggest that in Si the shear stress generated during shock compression is released via a high-pressure phase transition, challenging the classical picture of relaxation via defect-mediated plasticity. However, direct evidence supporting either deformation mechanism remains elusive. Here, we use sub-picosecond, highly-monochromatic x-ray diffraction to study (100)-oriented single-crystal Si under laser-driven shock compression. We provide the first unambiguous, time-resolved picture of Si deformation at ultra-high strain rates, demonstrating the predicted shear release via phase transition. Our results resolve the longstanding controversy on silicon deformation and provide direct proof of strain rate-dependent deformation mechanisms in a non-metallic system.  more » « less
Award ID(s):
2049620
PAR ID:
10383478
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Extreme shear deformation is used for several material processing methods and is unavoidable in many engineering applications in which two surfaces are in relative motion against each other while in physical contact. The mechanistic understanding of the microstructural evolution of multi-phase metallic alloys under extreme shear deformation is still in its infancy. Here, we highlight the influence of shear deformation on the microstructural hierarchy and mechanical properties of a binary as-cast Al-4 at.% Si alloy. Shear-deformation-induced grain refinement, multiscale fragmentation of the eutectic Si-lamellae, and metastable solute saturated phases with distinctive defect structures led to a two-fold increase in the flow stresses determined by micropillar compression testing. These results highlight that shear deformation can achieve non-equilibrium microstructures with enhanced mechanical properties in Al–Si alloys. The experimental and computational insights obtained here are especially crucial for developing predictive models for microstructural evolution of metals under extreme shear deformation. 
    more » « less
  2. The first in situ quantitative synchrotron X-ray diffraction (XRD) study of plastic strain-induced phase transformation (PT) has been performed on $$\alpha-\omega$$ PT in ultra-pure, strongly plastically predeformed Zr as an example, under different compression-shear pathways in rotational diamond anvil cell (RDAC). Radial distributions of pressure in each phase and in the mixture, and concentration of $$\omega$$-Zr, all averaged over the sample thickness, as well as thickness profile were measured. The minimum pressure for the strain-induced $$\alpha-\omega$$ PT, $$p^d_{\varepsilon}$$=1.2 GPa, is smaller than under hydrostatic loading by a factor of 4.5 and smaller than the phase equilibrium pressure by a factor of 3; it is independent of the compression-shear straining path. The theoretically predicted plastic strain-controlled kinetic equation was verified and quantified; it is independent of the pressure-plastic strain loading path and plastic deformation at pressures below $$p^d_{\varepsilon}$$. Thus, strain-induced PTs under compression in DAC and torsion in RDAC do not fundamentally differ. The yield strength of both phases is estimated using hardness and x-ray peak broadening; the yield strength in shear is not reached by the contact friction stress and cannot be evaluated using the pressure gradient. Obtained results open a new opportunity for quantitative study of strain-induced PTs and reactions with applications to material synthesis and processing, mechanochemistry, and geophysics. 
    more » « less
  3. Owing to the opaque nature of the laminated structures, traditional high-speed optical camera cannot be used to detect the dynamic process of sub-surface deformation. In this article, we report a study of using high speed X-ray imaging to study the high strain rate deformation in laminated Al structures. We used a Kolsky bar apparatus to apply dynamic compression and a high-speed synchrotron X-ray phase contrast imaging (PCI) setup to conduct the in situ X-ray imaging study. The in situ X-ray imaging captures the shock wave propagation in the laminated structures. After shock compression, we characterized the microstructures by using transmission electron microscopy (TEM), which demonstrates an increase of dislocation density. The micro-pillar compression tests show that the yield strength at 0.2% offset of laminated Al-graphene composite has a significant increase of 67%, from 30 to 50 MPa, compared to laminate Al after shock loading. 
    more » « less
  4. Networks of stiff fibers govern the elasticity of biological structures such as the extracellular matrix of collagen.These networks are known to stiffen nonlinearly under shear or extensional strain. Recently, it has been shown that such stiffening is governed by a strain-controlled athermal but critical phase transition, from a floppy phase below the critical strain to a rigid phase above the critical strain. While this phase transition has been extensively studied numerically and experimentally, a complete analytical theory for this transition remains elusive. Here, we present an effective medium theory (EMT) for this mechanical phase transition of fiber networks. We extend a previous EMT appropriate for linear elasticity to incorporate nonlinear effects via an anharmonic Hamiltonian. The mean-field predictions of this theory, including the critical exponents, scaling relations and non-affine fluctuations qualitatively agree with previous experimental and numerical results. 
    more » « less
  5. null (Ed.)
    Because of its far-reaching applications in geophysics and materials science, quartz has been one of the most extensively examined materials under dynamic compression. Despite 50 years of active research, questions remain concerning the structure and transformation of SiO 2 under shock compression. Continuum gas-gun studies have established that under shock loading quartz transforms through an assumed mixed-phase region to a dense high-pressure phase. While it has often been assumed that this high-pressure phase corresponds to the stishovite structure observed in static experiments, there have been no crystal structure data confirming this. In this study, we use gas-gun shock compression coupled with in situ synchrotron x-ray diffraction to interrogate the crystal structure of shock-compressed α-quartz up to 65 GPa. Our results reveal that α-quartz undergoes a phase transformation to a disordered metastable phase as opposed to crystalline stishovite or an amorphous structure, challenging long-standing assumptions about the dynamic response of this fundamental material. 
    more » « less