skip to main content


Title: Engineering multicellular living systems—A Keystone Symposia report
The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3–6, 2022, experts in the field met at the Keystone symposium “Engineering Multicellular Living Systems” to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium “Organoids as Tools for Fundamental Discovery and Translation”.  more » « less
Award ID(s):
2033723
NSF-PAR ID:
10383486
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Date Published:
Journal Name:
Annals of the New York Academy of Sciences
ISSN:
0077-8923
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Complex three‐dimensionalin vitroorgan‐like models, or organoids, offer a unique biological tool with distinct advantages over two‐dimensional cell culture systems, which can be too simplistic, and animal models, which can be too complex and may fail to recapitulate human physiology and pathology. Significant progress has been made in driving stem cells to differentiate into different organoid types, though several challenges remain. For example, many organoid models suffer from high heterogeneity, and it can be difficult to fully incorporate the complexity ofin vivotissue and organ development to faithfully reproduce human biology. Successfully addressing such limitations would increase the viability of organoids as models for drug development and preclinical testing. On April 3–6, 2022, experts in organoid development and biology convened at the Keystone Symposium “Organoids as Tools for Fundamental Discovery and Translation” to discuss recent advances and insights from this relatively new model system into human development and disease.

     
    more » « less
  2. ABSTRACT

    All living organisms secrete molecules for intercellular communication. Recent research has revealed that extracellular vesicles (EVs) play an important role in inter‐organismal cell‐to‐cell communication by transporting diverse messenger molecules, including RNA, DNA, lipids and proteins. These discoveries have raised fundamental questions regarding EV biology. How are EVs biosynthesized and loaded with messenger/cargo molecules? How are EVs secreted into the extracellular matrix? What are the EV uptake mechanisms of recipient cells? As EVs are produced by all kind of organisms, from unicellular bacteria and protists, filamentous fungi and oomycetes, to complex multicellular life forms such as plants and animals, basic research in diverse model systems is urgently needed to shed light on the multifaceted biology of EVs and their role in inter‐organismal communications. To help catalyse progress in this emerging field, a mini‐symposium was held in Munich, Germany in August 2018. This report highlights recent progress and major questions being pursued across a very diverse group of model systems, all united by the question of how EVs contribute to inter‐organismal communication.

     
    more » « less
  3. Abstract Multicellular systems, from bacterial biofilms to human organs, form interfaces (or boundaries) between different cell collectives to spatially organize versatile functions 1,2 . The evolution of sufficiently descriptive genetic toolkits probably triggered the explosion of complex multicellular life and patterning 3,4 . Synthetic biology aims to engineer multicellular systems for practical applications and to serve as a build-to-understand methodology for natural systems 5–8 . However, our ability to engineer multicellular interface patterns 2,9 is still very limited, as synthetic cell–cell adhesion toolkits and suitable patterning algorithms are underdeveloped 5,7,10–13 . Here we introduce a synthetic cell–cell adhesin logic with swarming bacteria and establish the precise engineering, predictive modelling and algorithmic programming of multicellular interface patterns. We demonstrate interface generation through a swarming adhesion mechanism, quantitative control over interface geometry and adhesion-mediated analogues of developmental organizers and morphogen fields. Using tiling and four-colour-mapping concepts, we identify algorithms for creating universal target patterns. This synthetic 4-bit adhesion logic advances practical applications such as human-readable molecular diagnostics, spatial fluid control on biological surfaces and programmable self-growing materials 5–8,14 . Notably, a minimal set of just four adhesins represents 4 bits of information that suffice to program universal tessellation patterns, implying a low critical threshold for the evolution and engineering of complex multicellular systems 3,5 . 
    more » « less
  4. Abstract

    In nature, cells self‐assemble at the microscale into complex functional configurations. This mechanism is increasingly exploited to assemble biofidelic biological systems in vitro. However, precise coding of 3D multicellular living materials is challenging due to their architectural complexity and spatiotemporal heterogeneity. Therefore, there is an unmet need for an effective assembly method with deterministic control on the biomanufacturing of functional living systems, which can be used to model physiological and pathological behavior. Here, a universal system is presented for 3D assembly and coding of cells into complex living architectures. In this system, a gadolinium‐based nonionic paramagnetic agent is used in conjunction with magnetic fields to levitate and assemble cells. Thus, living materials are fabricated with controlled geometry and organization and imaged in situ in real time, preserving viability and functional properties. The developed method provides an innovative direction to monitor and guide the reconfigurability of living materials temporally and spatially in 3D, which can enable the study of transient biological mechanisms. This platform offers broad applications in numerous fields, such as 3D bioprinting and bottom‐up tissue engineering, as well as drug discovery, developmental biology, neuroscience, and cancer research.

     
    more » « less
  5. Abstract

    Forces and relative movement between cells and extracellular matrix (ECM) are crucial to the self‐organization of tissues during development. However, the spatial range over which these dynamics can be controlled in engineering approaches is limited, impeding progress toward the construction of large, structurally mature tissues. Herein, shape‐morphing materials called “kinomorphs” that rationally control the shape and size of multicellular networks are described. Kinomorphs are sheets of ECM that change their shape, size, and density depending on patterns of cell contractility within them. It is shown that these changes can manipulate structure‐forming behaviors of epithelial cells in many spatial locations at once. Kinomorphs are built using a new photolithographic technology to pattern single cells into ECM sheets that are >10× larger than previously described. These patterns are designed to partially mimic the branch geometry of the embryonic kidney epithelial network. Origami‐inspired simulations are then used to predict changes in kinomorph shapes. Last, kinomorph dynamics are shown to provide a centimeter‐scale program that sets specific spatial locations in which ≈50 µm‐diameter epithelial tubules form by cell coalescence and structural maturation. The kinomorphs may significantly advance organ‐scale tissue construction by extending the spatial range of cell self‐organization in emerging model systems such as organoids.

     
    more » « less