skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Defining drinking water metal contaminant mixture risk by coupling zebrafish behavioral analysis with citizen science
Abstract Contaminated drinking water is an important public health consideration in New England where well water is often found to contain arsenic and other metals such as cadmium, lead, and uranium. Chronic or high level exposure to these metals have been associated with multiple acute and chronic diseases, including cancers and impaired neurological development. While individual metal levels are often regulated, adverse health effects of metal mixtures, especially at concentrations considered safe for human consumption remain unclear. Here, we utilized a multivariate analysis that examined behavioral outcomes in the zebrafish model as a function of multiple metal chemical constituents of 92 drinking well water samples, collected in Maine and New Hampshire. To collect these samples, a citizen science approach was used, that engaged local teachers, students, and scientific partners. Our analysis of 4016 metal-mixture combinations shows that changes in zebrafish behavior are highly mixture dependent, and indicate that certain combinations of metals, especially those containing arsenic, cadmium, lead, and uranium, even at levels considered safe in drinking water, are significant drivers of behavioral toxicity. Our data emphasize the need to consider low-level chemical mixture effects and provide a framework for a more in-depth analysis of drinking water samples. We also provide evidence for the efficacy of utilizing citizen science in research, as the broader impact of this work is to empower local communities to advocate for improving their own water quality.  more » « less
Award ID(s):
1922560
PAR ID:
10383577
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heavy metals contaminants include lead, chromium, arsenic, zinc, cadmium, copper, and mercury all of which can cause significant damage to human health and the environment as a result of their mobility and solubility within groundwater. In the Midwest portion of the United States, soil and groundwater based lead, zinc, and cadmium are the prominent pollutants of concern. While remedial technologies exist for heavy metals pollution, the majority of these solutions are expensive to design, maintain, and install. Drinking water treatment waste (DWTW) is a currently landfilled, relatively pure, industrial waste byproduct composed almost entirely of calcium oxide produced during water purification processes. Measured doses of drinking water treatment waste were submerged in synthetic groundwater solutions containing 0.01, 0.1, and 1.0 millimolar concentrations of lead, cadmium and zinc in order to determine if this material could provide remedial measures for heavy metals. In addition, the geomechanical properties and chemical composition of the material were determined. Removal rates varied based upon internal and external water content as well as flocculant formation. However, all tests verify that the material is capable of heavy metals removal at relatively rapid rates. This data suggests that when entrained in a previous matrix, the reactive nature of the byproduct sorbs ions in solution passing through the matrix. 
    more » « less
  2. Hurricanes can introduce metals into coastal systems. Unfortunately, metal concentrations are unknown in many hurricane prone locations. Here we measured vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, molybdenum, cadmium, antimony, barium, lead, and uranium in surface water, sediments, and seagrass (Thalassia testudinum) collected in seagrass beds and marinas around The Abacos, The Bahamas in November 2019, May 2020, and June and December 2021 to establish a post-Hurricane Dorian baseline, assess changes post-storm, and understand bioconcentration in seagrass. Metal concentrations were higher in marinas and several increased over time. Also, metal profiles in sediments became more similar over time. Together, these suggest that metals were impacted by Hurricane Dorian and are either returning to pre-storm conditions or increasing due to recovery-related activities. Thalassia testudinum uptakes most metals more readily from surface water than sediments. Therefore, seagrasses may phytoremediate metals, but also transfer metals to higher trophic levels. 
    more » « less
  3. Municipal drinking water, regulated by the Environmental Protection Agency via the Safe Drinking Water act, has long been assumed to be contaminant-free. However, crises related to drinking water have emerged, most notably the “Flint Water Crisis” in Flint, MI, where high levels of lead (Pb) were detected in the area’s water. Much of the water-sampling data collected in Flint was obtained by “Citizen Scientists” working closely with a team of researchers at Virginia Tech, who used the analytical technique of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify metal ions present in the water. Inspired by these efforts, we developed adaptable public water testing outreach efforts, led by students in Baltimore city (Middle School, High School, and College), to test the city’s drinking water. These “student-scientists” read news and scientific articles to understand the public health impact of lead in drinking water and the analytical approaches scientists use to detect metal ions in water. The students then developed a written “water collection protocol” and sought participation from colleagues (other students, faculty, and staff) who collected their home drinking water to be tested. The student scientists prepared and analyzed samples for lead (Pb) as well as copper (Cu), iron (Fe), and zinc (Zn) metal ions commonly found in drinking water, to be tested via ICP-MS. Data were then plotted onto a map of Baltimore City, with the metal levels indicated for each Zip code. This outreach event connects science to real-life news events while teaching analytical methodology and can be tailored to students at various stages of their education. 
    more » « less
  4. This study investigates the combined effects of environmental pollutants (lead, cadmium, total mercury) and behavioral factors (alcohol consumption, smoking) on depressive symptoms in women. Data from the National Health and Nutrition Examination Survey (NHANES) 2017–2018 cycle, specifically exposure levels of heavy metals in blood samples, were used in this study. The analysis of these data included the application of descriptive statistics, linear regression, and Bayesian Kernel Machine Regression (BKMR) to explore associations between environmental exposures, behavioral factors, and depression. The PHQ-9, a well-validated tool that assesses nine items for depressive symptoms, was used to evaluate depression severity over the prior two weeks on a 0–3 scale, with total scores ranging from 0 to 27. Exposure levels of heavy metals were measured in blood samples. BKMR was used to estimate the exposure–response relationship, while posterior inclusion probability (PIP) in BKMR was used to quantify the likelihood that a given exposure was included in the model, reflecting its relative importance in explaining the outcome (depression) within the context of other predictors in the mixture. A descriptive analysis showed mean total levels of lead, cadmium, and total mercury at 1.21 µg/dL, 1.47 µg/L, and 0.80 µg/L, respectively, with a mean PHQ-9 score of 5.94, which corresponds to mild depressive symptoms based on the PHQ-9 scoring. Linear regression indicated positive associations between depression and lead as well as cadmium, while total mercury had a negative association. Alcohol and smoking were also positively associated with depression. These findings were not significant, but limitations in linear regression prompted a BKMR analysis. BKMR posterior inclusion probability (PIP) analysis revealed alcohol and cadmium as significant contributors to depressive symptoms, with cadmium (PIP = 0.447) and alcohol (PIP = 0.565) showing notable effects. Univariate and bivariate analyses revealed lead and total mercury’s strong relationship with depression, with cadmium showing a complex pattern in the bivariate analysis. A cumulative exposure analysis of all metals and behavioral factors concurrently demonstrated that higher quantile levels of combined exposures were associated with an increased risk of depression. Finally, a single variable-effects analysis in BKMR revealed lead, cadmium, and alcohol had a stronger impact on depression. Overall, the study findings suggest that from exposure to lead, cadmium, mercury, alcohol, and smoking, cadmium and alcohol consumption emerge as key contributors to depressive symptoms. These results highlight the need to address both environmental and lifestyle choices in efforts to mitigate depression. 
    more » « less
  5. Abstract Urban community gardens have increased in prevalence as a means to generate fresh fruits and vegetables, including in areas lacking access to healthy food options. However, urban soils may have high levels of toxic heavy metals, including lead and cadmium and the metalloid arsenic, which can lead to severe health risks. In this study, fruit and vegetable samples grown at an urban community garden in southeastern San Diego, the Ocean View Growing Grounds, were sampled repeatedly over a four‐year time period in order to measure potential contamination of toxic heavy metals and metalloids and to develop solutions for this problem. Metal nutrient, heavy metal, and metalloid concentrations were monitored in the leaf and fruit tissues of fruit trees over the sampling period. Several of the fruit trees showed uptake of lead in the leaf samples, with Black Mission fig measuring 0.843–1.531 mg/kg dry weight and Mexican Lime measuring 1.103–1.522 mg/kg dry weight over the sampling period. Vegetables that were grown directly in the ground at this community garden and surrounding areas showed arsenic, 0.80 + 0.073 mg/kg dry weight for Swiss chard, and lead, 0.84 ± 0.404 mg/kg dry weight for strawberries, in their edible tissues. The subsequent introduction of raised beds with uncontaminated soil is described, which eliminated any detectable heavy metal or metalloid contamination in these crops during the monitoring period. Recommendations for facilitating the monitoring of edible tissues and for reducing risk are discussed, including introduction of raised beds and collaborations with local universities and research groups. 
    more » « less