Permeable reactive barriers (PRBs) are a well-known technique for groundwater remediation using industrialized reactive media such as zero-valent iron and activated carbon. Permeable reactive concrete (PRC) is an alternative reactive medium composed of relatively inexpensive materials such as cement and aggregate. A variety of multimodal, simultaneous processes drive remediation of metals from contaminated groundwater within PRC systems due to the complex heterogeneous matrix formed during cement hydration. This research investigated the influence coarse aggregate, portland cement, fly ash, and various combinations had on the removal of lead, cadmium, and zinc in solution. Absorption, adsorption, precipitation, co-precipitation, and internal diffusion of the metals are common mechanisms of removal in the hydrated cement matrix and independent of the aggregate. Local aggregates can be used as the permeable structure also possessing high metal removal capabilities, however calcareous sources of aggregate are preferred due to improved removal with low leachability. Individual adsorption isotherms were linear or curvilinear up, indicating a preferred removal process. For PRC samples, metal saturation was not reached over the range of concentrations tested. Results were then used to compare removal against activated carbon and aggregate-based PRBs by estimating material costs for the remediation of an example heavy metal contaminated Superfund site located in the Midwestern United States, Joplin, Missouri.
more »
« less
Heavy Metals Sorption by Drinking Water Treatment Byproducts in Jar Tests
Heavy metals contaminants include lead, chromium, arsenic, zinc, cadmium, copper, and mercury all of which can cause significant damage to human health and the environment as a result of their mobility and solubility within groundwater. In the Midwest portion of the United States, soil and groundwater based lead, zinc, and cadmium are the prominent pollutants of concern. While remedial technologies exist for heavy metals pollution, the majority of these solutions are expensive to design, maintain, and install. Drinking water treatment waste (DWTW) is a currently landfilled, relatively pure, industrial waste byproduct composed almost entirely of calcium oxide produced during water purification processes. Measured doses of drinking water treatment waste were submerged in synthetic groundwater solutions containing 0.01, 0.1, and 1.0 millimolar concentrations of lead, cadmium and zinc in order to determine if this material could provide remedial measures for heavy metals. In addition, the geomechanical properties and chemical composition of the material were determined. Removal rates varied based upon internal and external water content as well as flocculant formation. However, all tests verify that the material is capable of heavy metals removal at relatively rapid rates. This data suggests that when entrained in a previous matrix, the reactive nature of the byproduct sorbs ions in solution passing through the matrix.
more »
« less
- Award ID(s):
- 1439378
- PAR ID:
- 10063165
- Date Published:
- Journal Name:
- Geo-Chicago 2016
- Page Range / eLocation ID:
- 32 to 41
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Catastrophic release of heavy metals from the King River mine in Colorado and the Minas Gerais dam in Brazil have brought to the forefront the importance of contaminant stabilization and remediation in surface waters. Permeable reactive materials are currently utilized for the remediation of heavy metals and other pollutants by employing reactive media to remove contaminants. This research investigated the use of fly ashes with loss on ignition or sulfur trioxide exceeding ASTM C618 limits to enhance pollutant removal in pervious concrete. The high carbon and sulfur contents of the noncompliant fly ashes provide additional capacity to remove lead, cadmium, and zinc. High-sulfur and high-carbon fly ashes were less effective in metal removal at higher metal concentrations but improved removal at lower concentrations. These results suggest pervious concrete can be designed as an effective remedial technique for use in many infrastructure applications, including beneath permeable pavement, permeable asphalt, revetment, permeable shoulders, gabions for slope stability, mine tailing dams, and emergency surface water cleanup.more » « less
-
Abstract The distribution of legacy heavy metals in industrial city soils is not well documented. Therefore, fundamental details such as the ‘background’ (i.e., non-road/non-dripline) concentration of trace metals in urban soils are uncertain. While there has been a strong focus on mapping lead contamination near roads and residences, these studies are generally not placed in the context of the urban background. In this study, ‘background’ distributions of urban relevant trace metals: arsenic, cadmium, copper, lead, and zinc were mapped based on soil samples collected throughout Pittsburgh. Distinct spatial patterns were revealed: contamination is elevated in the eastern portion of the study area, driven by dominant wind patterns and historical coking activities in low-lying areas (paleochannels), areas subject to atmospheric temperature inversions that focus air contamination. The mixing analysis revealed spatial structures in contributions of industrial activities to metal soil contamination. In particular, regions enriched in cadmium relative to zinc (i.e., Zn:Cd<317) were located near historical coking operations, and areas enriched in lead relative to zinc (Pb:Zn>1) were located in areas with historical secondary lead smelters. These results suggest a comprehensive accounting of the trace metals concentrations in background soils has important implications for the assessment of exposure risk in populations residing in historically industrial areas. Relatively sparse sampling of background conditions in urban systems can indicate patterns of legacy contamination and attribute this contamination to historical sources.more » « less
-
Capacitive deionization (CDI) technologies have gained intense attention for water purification and desalination in recent years. Inexpensive and widely available porous carbon materials have enabled the fast growth of electrosorption research, highlighting the promise of CDI as a potentially cost-effective technology to remove ions. Whereas the main focus of CDI has been on bulk desalination, there has been a recent shift towards electrosorption for selective ion separations. Heavy metals are pollutants that can have severe health impacts and are present in both industrial wastewater and groundwater leachates. Heavy metal ions, such as chromium, cadmium, or arsenic, are of great concern to traditional treatment technologies, due to their low concentration and the presence of competing species. The modification/functionalization of porous carbon and recent developments of faradaic and redox-active materials have offered a new avenue for selective ion-binding of heavy metal contaminants. Here, we review the progress in electrosorptive technologies for heavy metal separations. We provide an overview of the wide applicability of carbon-based electrodes for heavy metal removal. In parallel, we highlight the trend toward modification of carbon materials, new developments in faradaic interfaces, and the underlying physico-chemical mechanisms that promote selective heavy metal separations.more » « less
-
Abstract Contaminated drinking water is an important public health consideration in New England where well water is often found to contain arsenic and other metals such as cadmium, lead, and uranium. Chronic or high level exposure to these metals have been associated with multiple acute and chronic diseases, including cancers and impaired neurological development. While individual metal levels are often regulated, adverse health effects of metal mixtures, especially at concentrations considered safe for human consumption remain unclear. Here, we utilized a multivariate analysis that examined behavioral outcomes in the zebrafish model as a function of multiple metal chemical constituents of 92 drinking well water samples, collected in Maine and New Hampshire. To collect these samples, a citizen science approach was used, that engaged local teachers, students, and scientific partners. Our analysis of 4016 metal-mixture combinations shows that changes in zebrafish behavior are highly mixture dependent, and indicate that certain combinations of metals, especially those containing arsenic, cadmium, lead, and uranium, even at levels considered safe in drinking water, are significant drivers of behavioral toxicity. Our data emphasize the need to consider low-level chemical mixture effects and provide a framework for a more in-depth analysis of drinking water samples. We also provide evidence for the efficacy of utilizing citizen science in research, as the broader impact of this work is to empower local communities to advocate for improving their own water quality.more » « less