skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset
Abstract Diffuse solar radiation is an important, but understudied, component of the Earth’s surface radiation budget, with most global climate models not archiving this variable and a dearth of ground-based observations. Here, we describe the development of a global 40-year (1980–2019) monthly database of total shortwave radiation, including its diffuse and direct beam components, called BaRAD (Bias-adjusted RADiation dataset). The dataset is based on a random forest algorithm trained using Global Energy Balance Archive (GEBA) observations and applied to the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) dataset at the native MERRA-2 resolution (0.5° by 0.625°). The dataset preserves seasonal, latitudinal, and long-term trends in the MERRA-2 data, but with reduced biases than MERRA-2. The mean bias error is close to 0 (root mean square error = 10.1 W m−2) for diffuse radiation and −0.2 W m−2(root mean square error = 19.2 W m−2) for the total incoming shortwave radiation at the surface. Studies on atmosphere-biosphere interactions, especially those on the diffuse radiation fertilization effect, can benefit from this dataset.  more » « less
Award ID(s):
1933630
PAR ID:
10383720
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
8
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Clouds and radiation play an important role in warming events over the Southern Ocean (SO). Here we evaluate European Center for Medium‐Range Weather Forecasts Reanalysis version 5 (ERA5) and Polar Weather Research Forecast (PWRF) output through comparison to surface‐based measurements of clouds, radiation, and the atmospheric state over the SO during 2017–2023 at Escudero Station (62.2°S, 58.97°W) on King George Island. ERA5 mean monthly downward shortwave (DSW) radiative fluxes are found to be 38–50 W m−2higher than observations in summer, whereas ERA5 mean monthly downward longwave (DLW) is biased by −18 to −22 W m−2in summer and −16 W m−2on average over the year. Comparisons of temperature, humidity, and lowest‐cloud base heights between ERA5 and observations rule these factors out as large contributors to the DLW flux biases. The similarity between observed DLW cloud forcing distributions for atmospheric columns containing low‐level liquid and ice‐only clouds suggests limited influence of cloud phase errors on DLW biases. Thus the most likely explanation for DLW flux biases in ERA5 is underestimated cloud optical depth, which is also consistent with DSW flux biases. Similar biases in ERA5 are found during atmospheric river (AR) events. By contrast, PWRF flux bias magnitudes are much smaller during AR events (−12 W m−2for DSW and −2 W m−2for DLW). After bias correction, ERA5 monthly average net cloud forcing over 2017–2023 is found to be a minimum of −107 W m−2in January and a maximum of 65 W m−2in June. 
    more » « less
  2. Abstract Aerosols can enhance terrestrial productivity through increased absorption of solar radiation by the shaded portion of the plant canopy—the diffuse radiation fertilization effect. Although this process can, in principle, alter surface evaporation due to the coupling between plant water loss and carbon uptake, with the potential to change the surface temperature, aerosol‐climate interactions have been traditionally viewed in light of the radiative effects within the atmosphere. Here, we develop a modeling framework that combines global atmosphere and land model simulations with a conceptual diagnostic tool to investigate these interactions from a surface energy budget perspective. Aerosols increase the terrestrial evaporative fraction, or the portion of net incoming energy consumed by evaporation, by over 4% globally and as much as ∼40% regionally. The main mechanism for this is the increase in energy allocation from sensible to latent heat due to global dimming (reduction in global shortwave radiation) and slightly augmented by diffuse radiation fertilization. In regions with moderately dense vegetation (leaf area index >2), the local surface cooling response to aerosols is dominated by this evaporative pathway, not the reduction in incident radiation. Diffuse radiation fertilization alone has a stronger impact on gross primary productivity (+2.18 Pg C y−1or +1.8%) than on land evaporation (+0.18 W m−2or +0.48%) and surface temperature (−0.01 K). Our results suggest that it is important for land surface models to distinguish between quantity (change in total magnitude) and quality (change in diffuse fraction) of radiative forcing for properly simulating surface climate. 
    more » « less
  3. Abstract We mapped tidal wetland gross primary production (GPP) with unprecedented detail for multiple wetland types across the continental United States (CONUS) at 16‐day intervals for the years 2000–2019. To accomplish this task, we developed the spatially explicit Blue Carbon (BC) model, which combined tidal wetland cover and field‐based eddy covariance tower data into a single Bayesian framework, and used a super computer network and remote sensing imagery (Moderate Resolution Imaging Spectroradiometer Enhanced Vegetation Index). We found a strong fit between the BC model and eddy covariance data from 10 different towers (r2= 0.83,p< 0.001, root‐mean‐square error = 1.22 g C/m2/day, average error was 7% with a mean bias of nearly zero). When compared with NASA's MOD17 GPP product, which uses a generalized terrestrial algorithm, the BC model reduced error by approximately half (MOD17 hadr2= 0.45,p< 0.001, root‐mean‐square error of 3.38 g C/m2/day, average error of 15%). The BC model also included mixed pixels in areas not covered by MOD17, which comprised approximately 16.8% of CONUS tidal wetland GPP. Results showed that across CONUS between 2000 and 2019, the average daily GPP per m2was 4.32 ± 2.45 g C/m2/day. The total annual GPP for the CONUS was 39.65 ± 0.89 Tg C/year. GPP for the Gulf Coast was nearly double that of the Atlantic and Pacific Coasts combined. Louisiana alone accounted for 15.78 ± 0.75 Tg C/year, with its Atchafalaya/Vermillion Bay basin at 4.72 ± 0.14 Tg C/year. The BC model provides a robust platform for integrating data from disparate sources and exploring regional trends in GPP across tidal wetlands. 
    more » « less
  4. Abstract Global Forecast System (GFS), North American Mesoscale Forecast System (NAM), and High-Resolution Rapid Refresh (HRRR) 2-m temperature, 10-m wind speed, and precipitation accumulation forecasts initialized at 1200 UTC are verified against New York State Mesonet (NYSM) observations from 1 January 2018 through 31 December 2021. NYSM observations at 126 site locations are used to calculate standard error statistics (e.g., forecast error, root-mean-square error) for temperature and wind speed and contingency table statistics for precipitation across forecast hours, meteorological seasons, and regions. The majority of the focus is placed on the first 18 forecast hours to allow for comparison among all three models. A daily NYSM station-mean temperature error analysis identified a slight cold bias at temperatures below 25°C in the GFS, a cool-to-warm bias as forecast temperatures warm in the HRRR, and a warm bias at temperatures above 30°C in each model. Differences arise when considering temperature biases with respect to lead times and seasons. Wind speeds are overforecast at all ranges in each season, and forecast wind speeds ≥ 18 m s−1are rarely observed. Performance diagrams indicate overall good forecast performance at precipitation thresholds of 0.1–1.5 mm, but with a high frequency bias in the GFS and NAM. This paper provides an overview of deterministic forecast performance across New York State, with the aim of sharing common biases associated with temperature, wind speed, and precipitation with operational forecasters and is the first step in developing a real-time model forecast uncertainty prediction tool. 
    more » « less
  5. Abstract Heat storage change (HSC) is a crucial component of lake's thermal energy budget. Conventional temperature profile based models of HSC require location specific parameters such as lakebed topography. Based on the half‐order time‐derivative formula of heat fluxes, an analytical model was formulated for estimating HSC from water surface temperature and solar radiation without using geography dependent parameters. The proposed model was tested against field measurements at Poyang Lake, a shallow inland lake, which has pronounced seasonal variations in water level and lake area. Our analysis indicates that the model accurately simulates diurnal HSC with a coefficient of determination of 0.94 and a root mean squared error (RMSE) of 77.5 ± 21.6 Wm−2for the study period. Larger nighttime RMSE (75.0 ± 26.8 Wm−2) than the daytime value (55.1 ± 19.7 W m−2) is attributable to larger measurement errors of nighttime turbulent fluxes. The estimation of HSC independent of temperature profile and lake‐specific parameters by the proposed model facilitates remote sensing monitoring the HSC of global water bodies. 
    more » « less