With rising global temperatures, urban environments are increasingly vulnerable to heat stress, often exacerbated by the Urban Heat Island (UHI) effect. While most UHI research has focused on large metropolitan areas around the world, relatively smaller-sized cities (with a population 100 000–300 000) remain understudied despite their growing exposure to extreme heat and meteorological significance. In particular, urban heat advection (UHA), the transport of heat by mean winds, remains a key but underexplored mechanism in most modeling frameworks. High-resolution numerical weather prediction (NWP) models are essential tools for simulating urban hydrometeorological conditions, yet most prior evaluations have focused on retrospective reanalysis products rather than forecasts. In this study, we assess the performance of a widely used operational weather forecast model, the High-Resolution Rapid Refresh (HRRR), as a representative example of current NWP systems. We investigate its ability to predict spatial and temporal patterns of urban heat and UHA within and around Lubbock, Texas, a small-sized city located in a semi-arid environment in the southwestern US. Using data collected between 1 September 2023, and 31 August 2024 from the Urban Heat Island Experiment in Lubbock, Texas (U-HEAT) network and five West Texas Mesonet stations, we compare 18 h forecasts against in situ observations. HRRR forecasts exhibit a consistent nighttime cold bias at both urban and rural sites, a daytime warm bias at rural locations, and a pervasive dry bias across all seasons. The model also systematically overestimates near-surface wind speeds, further limiting its ability to accurately predict UHA. Although HRRR captures the expected slower nocturnal cooling in urban areas, it does not well capture advective heat transport under most wind regimes. Our findings reveal both systematic biases and urban representation limitations in current high-resolution NWP forecasts. Our forecast–observation comparisons underscore the need for improved urban parameterizations and evaluation frameworks focused on forecast skill, with important implications for heat-risk warning systems and forecasting in small and mid-sized cities.
more »
« less
Verification of the Global Forecast System, North American Mesoscale Forecast System, and High-Resolution Rapid Refresh Model Near-Surface Forecasts by Use of the New York State Mesonet
Abstract Global Forecast System (GFS), North American Mesoscale Forecast System (NAM), and High-Resolution Rapid Refresh (HRRR) 2-m temperature, 10-m wind speed, and precipitation accumulation forecasts initialized at 1200 UTC are verified against New York State Mesonet (NYSM) observations from 1 January 2018 through 31 December 2021. NYSM observations at 126 site locations are used to calculate standard error statistics (e.g., forecast error, root-mean-square error) for temperature and wind speed and contingency table statistics for precipitation across forecast hours, meteorological seasons, and regions. The majority of the focus is placed on the first 18 forecast hours to allow for comparison among all three models. A daily NYSM station-mean temperature error analysis identified a slight cold bias at temperatures below 25°C in the GFS, a cool-to-warm bias as forecast temperatures warm in the HRRR, and a warm bias at temperatures above 30°C in each model. Differences arise when considering temperature biases with respect to lead times and seasons. Wind speeds are overforecast at all ranges in each season, and forecast wind speeds ≥ 18 m s−1are rarely observed. Performance diagrams indicate overall good forecast performance at precipitation thresholds of 0.1–1.5 mm, but with a high frequency bias in the GFS and NAM. This paper provides an overview of deterministic forecast performance across New York State, with the aim of sharing common biases associated with temperature, wind speed, and precipitation with operational forecasters and is the first step in developing a real-time model forecast uncertainty prediction tool.
more »
« less
- Award ID(s):
- 2019758
- PAR ID:
- 10488235
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Weather and Forecasting
- Volume:
- 39
- Issue:
- 2
- ISSN:
- 0882-8156
- Format(s):
- Medium: X Size: p. 369-386
- Size(s):
- p. 369-386
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sierras de Córdoba (Argentina) is characterized by the occurrence of extreme precipitation events during the austral warm season. Heavy precipitation in the region has a large societal impact, causing flash floods. This motivates the forecast performance evaluation of 24-h accumulated precipitation and vertical profiles of atmospheric variables from different numerical weather prediction (NWP) models with the final aim of helping water management in the region. The NWP models evaluated include the Global Forecast System (GFS), which parameterizes convection, and convection-permitting simulations of the Weather Research and Forecasting (WRF) Model configured by three institutions: University of Illinois at Urbana–Champaign (UIUC), Colorado State University (CSU), and National Meteorological Service of Argentina (SMN). These models were verified with daily accumulated precipitation data from rain gauges and soundings during the RELAMPAGO-CACTI field campaign. Generally all configurations of the higher-resolution WRFs outperformed the lower-resolution GFS based on multiple metrics. Among the convection-permitting WRF Models, results varied with respect to rainfall threshold and forecast lead time, but the WRFUIUC mostly performed the best. However, elevation-dependent biases existed among the models that may impact the use of the data for different applications. There is a dry (moist) bias in lower (upper) pressure levels which is most pronounced in the GFS. For Córdoba an overestimation of the northern flow forecasted by the NWP configurations at lower levels was encountered. These results show the importance of convection-permitting forecasts in this region, which should be complementary to the coarser-resolution global model forecasts to help various users and decision-makers.more » « less
-
Abstract We utilized high temporal resolution, near-surface observations of sustained winds and gusts from two networks, the primarily airport-based Automated Surface Observing System (ASOS) and the New York State Mesonet (NYSM), to evaluate forecasts from the operational High-Resolution Rapid Refresh (HRRR) model, versions 3 and 4. Consistent with past studies, we showed the model has a high degree of skill in reproducing the diurnal variation of network-averaged wind speed of ASOS stations, but also revealed several areas where improvements could be made. Forecasts were found to be underdispersive, deficient in both temporal and spatial variability, with significant errors occurring during local nighttime hours in all regions and in forested environments for all hours of the day. This explained why the model overpredicted the network-averaged wind in the NYSM because much of that network’s stations are in forested areas. A simple gust parameterization was shown not only to have skill in predicting gusts in both networks but also to mitigate systemic biases found in the sustained wind forecasts. Significance Statement Many users depend on forecasts from operational models and need to know their strengths, weaknesses, and limitations. We examined generally high-quality near-surface observations of sustained winds and gusts from the nationwide Automated Surface Observing System (ASOS) and the New York State Mesonet (NYSM) and used them to evaluate forecasts from the previous (version 3) and current (version 4) operational High-Resolution Rapid Refresh (HRRR) model for a selected month. Evidence indicated that the wind forecasts are excellent yet imperfect and areas for further improvement remain. In particular, we showed there is a high degree of skill in representing the diurnal variation of sustained wind at ASOS stations but insufficient spatial and temporal forecast variability and overprediction at night everywhere, in forested areas at all times of day, and at NYSM sites in particular, which are more likely to be sited in the forest. Gusts are subgrid even at the fine grid spacing of the HRRR (3 km) and thus must be parameterized. Our simple gust algorithm corrected for some of these systemic biases, resulting in very good predictions of the maximum hourly gust.more » « less
-
Abstract Pure artificial intelligence (AI)-based weather prediction (AIWP) models have made waves within the scientific community and the media, claiming superior performance to numerical weather prediction (NWP) models. However, these models often lack impactful output variables such as precipitation. One exception is Google DeepMind’s GraphCast model, which became the first mainstream AIWP model to predict precipitation, but performed only limited verification. We present an analysis of the ECMWF’s Integrated Forecasting System (IFS)-initialized (GRAPIFS) and the NCEP’s Global Forecast System (GFS)-initialized (GRAPGFS) GraphCast precipitation forecasts over the contiguous United States and compare to results from the GFS and IFS models using 1) grid-based, 2) neighborhood, and 3) object-oriented metrics verified against the fifth major global reanalysis produced by ECMWF (ERA5) and the NCEP/Environmental Modeling Center (EMC) stage IV precipitation analysis datasets. We affirmed that GRAPGFSand GRAPIFSperform better than the GFS and IFS in terms of root-mean-square error and stable equitable errors in probability space, but the GFS and IFS precipitation distributions more closely align with the ERA5 and stage IV distributions. Equitable threat score also generally favored GraphCast, particularly for lower accumulation thresholds. Fractions skill score for increasing neighborhood sizes shows greater gains for the GFS and IFS than GraphCast, suggesting the NWP models may have a better handle on intensity but struggle with the location. Object-based verification for GraphCast found positive area biases at low accumulation thresholds and large negative biases at high accumulation thresholds. GRAPGFSsaw similar performance gains to GRAPIFSwhen compared to their NWP counterparts, but initializing with the less familiar GFS conditions appeared to lead to an increase in light precipitation. Significance StatementPure artificial intelligence (AI)-based weather prediction (AIWP) has exploded in popularity with promises of better performance and faster run times than numerical weather prediction (NWP) models. However, less attention has been paid to their capability to predict impactful, sensible weather like precipitation, precipitation type, or specific meteorological features. We seek to address this gap by comparing precipitation forecast performance by an AI model called GraphCast to the Global Forecast System (GFS) and the Integrated Forecasting System (IFS) NWP models. While GraphCast does perform better on many verification metrics, it has some limitations for intense precipitation forecasts. In particular, it less frequently predicts intense precipitation events than the GFS or IFS. Overall, this article emphasizes the promise of AIWP while at the same time stresses the need for robust verification by domain experts.more » « less
-
Abstract In August 2022, Death Valley, the driest place in North America, experienced record flooding from summertime rainfall associated with the North American monsoon (NAM). Given the socioeconomic cost of these type of events, there is a dire need to understand their drivers and future statistics. Existing theory predicts that increases in the intensity of precipitation is a robust response to anthropogenic warming. Paleoclimatic evidence suggests that northeast Pacific (NEP) sea surface temperature (SST) variability could further intensify summertime NAM rainfall over the desert southwest. Drawing on this paleoclimatic evidence, we use historical observations and reanalyzes to test the hypothesis that warm SSTs on the southern California margin are linked to more frequent extreme precipitation events in the NAM domain. We find that summers with above-average coastal SSTs are more favorable to moist convection in the northern edge of the NAM domain (southern California, Arizona, New Mexico, and the southern Great Basin). This is because warmer SSTs drive circulation changes that increase moisture flux into the desert southwest, driving more frequent precipitation extremes and increases in seasonal rainfall totals. These results, which are robust across observational products, establish a linkage between marine and terrestrial extremes, since summers with anomalously warm SSTs on the California margin have been linked to seasonal or multi-year NEP marine heatwaves. However, current generation earth system models (ESMs) struggle to reproduce the observed relationship between coastal SSTs and NAM precipitation. Across models, there is a strong negative relationship between the magnitude of an ESM’s warm SST bias on the California margin and its skill at reproducing the correlation with desert southwest rainfall. Given persistent NEP SST biases in ESMs, our results suggest that efforts to improve representation of climatological SSTs are crucial for accurately predicting future changes in hydroclimate extremes in the desert southwest.more » « less
An official website of the United States government
