skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrodynamics of Metachronal Motion: Effects of Spatial Asymmetry on the Flow Interaction Between Adjacent Appendages
Abstract Metachronal motion is a unique swimming strategy widely adopted by many small animals on the scale of microns up to several centimeters (e.g., ctenophores, copepods, krill, and shrimp). During propulsion, each evenly spaced appendage performs a propulsive stroke sequentially with a constant phaselag from its neighbor, forming a metachronal wave. To produce net thrust in the low-to-intermediate Reynolds number regime, where viscous forces are dominant, the beat cycle of a metachronal appendage must present significant spatial asymmetry between the power and recovery stroke. As the Reynolds number increases, the beat cycle is observed to change from high spatial asymmetry to lower spatial asymmetry. However, it is still unclear how the magnitude of spatial asymmetry can modify the shear layers near the tip of appendages and thus affect its associated hydrodynamic performance. In this study, ctenophores are used to investigate the hydrodynamics of multiple appendages performing a metachronal wave. Ctenophores swim using paddle-like ciliary structures (i.e., ctenes), which beat metachronally in rows circumscribing an ovoid body. Based on high-speed video recordings, we reconstruct the metachronal wave of ctenes for both a lower spatial asymmetry case and a higher spatial asymmetry case. An in-house immersed-boundary-method-based computational fluid dynamics solver is used to simulate the flow field and associated hydrodynamic performance. Our simulation results aim to provide fundamental fluid dynamic principles for guiding the design of bio-inspired miniaturized flexible robots swimming in the low-to-intermediate Reynolds number regime.  more » « less
Award ID(s):
2120505 2120689 2451990
PAR ID:
10383762
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASME 2022 Fluids Engineering Division Summer Meeting
Volume:
FEDSM2022-86967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Biological systems have often been sources of inspiration for engineering design. Over the past decade, advances in soft robotics have enabled the development of bioinspired technology across a wide range of sizes and applications. When paired with recent advances in miniaturization and manufacturing techniques, soft robotics can be used to investigate the locomotion and bio-hydrodynamics of millimeter-scale swimmers that operate at intermediate Reynolds numbers (100–103). However, it is important to understand the kinematics and dynamics of biological model systems in order to leverage the true potential of bioinspired robots/devices. Ctenophores (comb jellies) are gelatinous marine invertebrates with soft bodies and flexible appendages composed of bundles of millimeter-long cilia; they are the largest animals in the world to locomote using cilia, with each appendage operating at a Reynolds number of approximately 102. Their efficiency, maneuverability, and ubiquity in the global ocean make them a potentially attractive candidate for bioinspired design applications. Each ctenophore has eight rows of paddle-like ciliary bundles (ctenes) that beat metachronally, with a phase lag between neighboring appendages, producing a “metachronal wave” that propagates along the row. This strategy, known as metachronal coordination, is also used by many other organisms (including crustaceans, annelids, and insects) to facilitate feeding, respiration, and locomotion. In general, the performance of a metachronal system depends on a large number of geometrical and dynamical parameters (e.g. beat frequency, phase lag, appendage length, appendage spacing, et al). However, it is unclear how these parameters interact to affect the hydrodynamics of the system overall. We take advantage of natural variation between different species of ctenophores to explore the role of beating frequency, body size, and propulsor spacing in metachronal systems. Using Particle Shadow Velocimetry (PSV), we compare velocity and vorticity fields generated by actively beating ctene rows in three distinct ctenophore species, across a range of beating frequencies and body shapes. Our findings show that ctenophores with more densely packed ctenes (i.e., closer propulsor spacing) generate more coherent flow fields compared to those with higher propulsor spacing at similar Reynolds numbers. Our results highlight the importance of subtle geometric/kinematic differences in driving fluid flow by flexible appendages, and provide a foundation for further investigation of the role of appendage spacing in metachronal coordination for both biological and bioinspired systems. 
    more » « less
  2. Metachronal rowing is a biological propulsion mechanism employed by many swimming invertebrates (e.g. copepods, ctenophores, krill and shrimp). Animals that swim using this mechanism feature rows of appendages that oscillate in a coordinated wave. In this study, we used observations of a swimming ctenophore (comb jelly) to examine the hydrodynamic performance and vortex dynamics associated with metachronal rowing. We first reconstructed the beating kinematics of ctenophore appendages based on a high-speed video of a metachronally coordinated row. Following the reconstruction, two numerical models were developed and simulated using an in-house immersed-boundary-method-based computational fluid dynamics solver. The two models included the original geometry (16 appendages in a row) and a sparse geometry (8 appendages, formed by removing every other appendage along the row). We found that appendage tip vortex interactions contribute to hydrodynamic performance via a vortex-weakening mechanism. Through this mechanism, appendage tip vortices are significantly weakened during the drag-producing recovery stroke. As a result, the swimming ctenophore produces less overall drag, and its thrust-to-power ratio is significantly improved (up to 55.0 % compared with the sparse model). Our parametric study indicated that such a propulsion enhancement mechanism is less effective at higher Reynolds numbers. Simulations were also used to investigate the effects of substrate curvature on the unsteady hydrodynamics. Our results illustrated that, compared with a flat substrate, arranging appendages on a curved substrate can boost the overall thrust generation by up to 29.5 %. These findings provide new insights into the fluid dynamic principles of propulsion enhancement underlying metachronal rowing. 
    more » « less
  3. Abstract Ctenophores swim using flexible rows of appendages called ctenes that form the metachronal paddling. To generate propulsion, each appendage operates a power stroke that strokes backward, followed by a recovery stroke that allows the appendage to readjust its position. Notably, strokes of most metachronal swimmers are asymmetric, with faster power strokes while slower recovery strokes. Previously, the material properties are assumed as isotropic. So, the faster power stoke will lead to more pronounce deformation and the slower recovery stroke will lead to less deformation. However, this contradicts with the observations that power-stroking ctenes have the least deformation and recover deforms more, indicating an anisotropic material behavior. Such anisotropic material is hard to be manufactured, but the anisotropic behavior may be achieved by making the initial structural shape curved. The pre-curved ctene, that bending towards downstream, will be straighten in power stoke while easy to bend during recovery stroke. Our study aims to demonstrate the feasibility of using pre-curved shapes to achieve anisotropic material properties during metachronal swimming. Treating it as fluid-structure interaction (FSI) problem, we integrate our in-house computational fluid dynamics (CFD) solver with a finite element method (FEM) solver, utilizing strong coupling methods for convergence. By comparing the performance of pre-curved ctenes with straight ones, which represent isotropic material properties, we found that the curved ctenes exhibited 26.05% to 65.69% higher cycle-averaged thrust compared to the straight one as stiffness is lower. However, as stiffness increased, the pre-curved ctenes produced 3.92% to 30.58% less thrust than the straight ones. Similar trends were observed in propulsive efficiency, with the pre-curved ctenes demonstrating 46.97% better efficiency at the lowest stiffness but dropping to 34.02% less efficient as stiffness rise. Thus, while the pre-curved initial shape led to better performance at lower stiffness, exceeding a certain stiffness threshold resulted in worse performance compared to straight ctenes. The thrust enhancement from pre-curve shape is due to the drag reduction during recovery stroke, where the curved shape mitigate part of force to point more downward. 
    more » « less
  4. The hydrodynamics of swimming at the millimeter-to-centimeter scale often present the challenge of having both viscous and inertial effects playing nontrivial roles. Inertial forces arise from the momentum of a moving fluid, while viscous forces come from friction within the flow. The non-dimensional Reynolds number (Re) compares the magnitudes of the inertial and viscous forces within a flow. At low Re (≪ 1), viscous forces dominate; at higher Re (≫ 1), inertial forces are more important. Efforts to understand the hydrodynamics of swimming have mainly focused on the extremes of fully viscous-dominated (Re ≪ 1) or inertia-dominated flow (Re ≫ 1). However, many animals swim in an intermediate regime, where inertia and viscosity are both significant. As an impactful and generalizable case study, we focus on ctenophores (comb jellies), a type of marine zooplankton. Ctenophores swim via the coordinated rowing of numerous highly flexible appendages (ctenes), with Reynolds numbers on the order of 10-100. Their locomotory dynamics present a unique opportunity to study the scaling of rowing (drag-based propulsion) across the low to intermediate Reynolds number range. With a combination of animal experiments, reduced-order analytical modeling, and physical-robotic modeling, we investigate how the kinematic and geometric variables of beating ctenes vary across Re, and how they affect swimming (including force production, speed, and maneuverability). Using animal experiments, we quantify the spatiotemporal asymmetry of beating ctenes across a wide range of animal sizes and Re. With our reduced-order model—the first to incorporate adequate formulations for the viscous-inertial nature of this regime—we explore the maneuverability and agility displayed by ctenophores, and show that by controlling the kinematics of their distributed appendages, ctenophores are capable of nearly omnidirectional swimming. Finally, we use a compliant robotic model that mimics ctenophore rowing kinematics to study rowing performance with direct calculation of thrust and lift forces distributed along the propulsor. These experiments shed new light on the relationship between motion asymmetries and thrust and lift production. This combination of animal experiments, analytical modeling, and physical modeling is the most detailed study of low to intermediate Re rowing to date, and provides a foundation for future applications in bio-inspired design. 
    more » « less
  5. null (Ed.)
    Abstract Numerous species of aquatic invertebrates, including crustaceans, swim by oscillating multiple closely spaced appendages. The coordinated, out-of-phase motion of these appendages, known as “metachronal paddling,” has been well-established to improve swimming performance relative to synchronous paddling. Invertebrates employing this propulsion strategy cover a wide range of body sizes and shapes, but the ratio of appendage spacing (G) to the appendage length (L) has been reported to lie in a comparatively narrow range of 0.2 < G/L ≤ 0.65. The functional role of G/L on metachronal swimming performance is unknown. We hypothesized that for a given Reynolds number and stroke amplitude, hydrodynamic interactions promoted by metachronal stroke kinematics with small G/L can increase forward swimming speed. We used a dynamically scaled self-propelling robot to comparatively examine swimming performance and wake development of metachronal and synchronous paddling under varying G/L, phase lag, and stroke amplitude. G/L was varied from 0.4 to 1.5, with the expectation that when G/L is large, there should be no performance difference between metachronal and synchronous paddling due to a lack of interaction between vortices that form on the appendages. Metachronal stroking at nonzero phase lag with G/L in the biological range produced faster swimming speeds than synchronous stroking. As G/L increased and as stroke amplitude decreased, the influence of phase lag on the swimming speed of the robot was reduced. For smaller G/L, vortex interactions between adjacent appendages generated a horizontally oriented wake and increased momentum fluxes relative to larger G/L, which contributed to increasing swimming speed. We find that while metachronal motion augments swimming performance for closely spaced appendages (G/L <1), moderately spaced appendages (1.0 ≤ G/L ≤ 1.5) can benefit from the metachronal motion only when the stroke amplitude is large. 
    more » « less